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Abstract.

In this paper, we employ regularity assumptions on the true solution of an
elliptic interface problem as well as domain approximation technique
made popular by B. Deka [Finite element method with numerical
quadrature for elliptic problems with smooth interfaces, J. Comput. Appl.
Math. 234(2) (2010), 605-612] and Chen and Zou ([Finite element
methods and their convergence for elliptic and parabolic interface
" problems, Numer. Math. 79(2) (1998), 175-202] and references therein)
respectively in the finite €lement method for elliptic problems with smooth
interfaces. It is shown that the discrete solution converges to the exact

solution optimally in the order of estimates on’ [* -norm and H'-norm
where the regularity of the solution may be different throughout the whole
domain. An example is furnished to illustrate the principle.
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1. Introduction

There has been considerable interest in the past four decades on the study of
finite element methods for solving elliptic interface problems which are encountered
in material sciences, fluid dynamics and stationary heat problems. One of such cases
is when two distinct materials or fluids with different conductivities or densities or
diffusions are involved. These problems are defined using some approximation

hypotheses.

As an early proponent, Babuska [2] studied the first class of finite element
method for elliptic interface problem on a smooth domain having a smooth interface.

He formulated the problem as a minimization problem and obtained H I -norm
estimate under some approximation assumptipr}s. Bramble and King [5] considered a
finite element method in which the domains Q; and Q, are replaced by polygonal

domains Q; , and Q, j, respectively. This facilitates the transfer of the Dirichlet
data and the interface to the polygonal boundaries.

Closely related ideas contained in the works of Huang and Zou [8] and Barrett
and Elliot [3] were used via mesh refinement, mortar element and penalized
parameter to solve second order elliptic interface problems. However, the results of
these earlier mentioned authors lack optimal order of convergence. These limitations
motivated other researchers into investigating problems involving more practical
regularity assumptions on the exact solutions. Hence in the succeeding decades, the
convergence of finite element method by practical regularity assumptions on the
exact solution of elliptic interface problems emerged in the works of Chen and Zou
[6], Sinha and Deka [12] and others.

Their approach involved domain approximation and has the added advantage
that the calculation of stiffness matrix and interface integral related to the jumps of
normal derivatives are quite simpler and more practical. In this direction, B. Deka [4]
extended the technique by studying the effect of numerical quadrature on elliptic
problems with smooth interfaces. One of the hallmarks of his work [13] is in showing

the existence of optimal order error estimates on [? and H'-norms for the case
where the regularity of the solution is low on whole domain.

In this work, we are concerned with the use of well-known quadrature schemes
to evaluate the integral which appears in finite element approximation of an elliptic
problem with smooth interface of the form:
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=V - (aq;Vu) + agu = [ in Q, (1.1)

u(x) = 0 on 8Q, (12)
Ou .

[«] =0, [B%] = j(x) alongT, - (1.3)

where Q is a convex polygonal domain in R? and Q; cQ is a region with c?
boundary I =0Q; and Q, =Q/Q;. The functions @, and a, are assumed to be
positive and piecewise constant, i.e., aj(x)=ay;, ag(x) = ap; for x € Q;, i=1,2.
We show that this replacement will not affect the order of convergence of the

technique discussed in [4]. In this regard an improved optimal 1’ and H ! _norm
error estimates are derived. This result complements and improves earlier results
obtained by B. Deka and other contributors.. « 4

The paper is structured as follows: Section 2 introduces basic notions, recalls the
quadrature schemes on finite element method from [4] for elliptic interface problem.
Section 3 introduces the finite element discretization and some known results for
elliptic interface problems. Section 4 discusses the effect of numerical quadrature on
finite element technique. The concluding section presents two examples to illustrate
the principle. )

2. Preliminary Notes

In this paper, the standard notations of Sobolev spaces and norms are used. For

m>0 and 1< p <o, W™P(Q) denotes Sobolev space of order m with norms

I/p

ul|™P(Q) = D%u |P , I<p<w
Il " (@) OS%:S,,,” 1. p

m,0 . o
e Iy (Q)—_Osrro?[)ém” D%u “Lw(g), p=®

and for p = 2, we write

wm2(Q) = H'"(\Q).

H{'(Q) is a closed subspace of H™(Q), which is the closure of Cy(Q) with
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respect to the norm of H™(Q). For a fractional number s, the Sobolev space is

defined as in [1]. The following space
X = H'(Q)N HXQ) N H*(Q,)
equipped with the norm
vy =1Vl + Iv "HZ(Q]) +|v ”1—12(Q2)
is employed in the work. We introduce the weak formulation of the problem by

defining the bilinear form A(---): HY(Q) x H'(Q) > R by

Au, v) = J' {a\Vu-Vv + a(x)uvidx, Vu,ve HY(Q). 2.1
@ -8
In this paper, the generic positive constant C is always independent of the finite
element mesh parameter A.

Variational formulation
The weak formulation (2.1) of the problem consists in multiplying both sides of

problem (1.1)-(1.3) by a test function v € Co(Q), ie.,
(=(V-aq\Vu)+agu)v=fv in Q
—(V-aVu)v + aguv = fv.

Then integrating by parts over Q gives

IQ aVu - Vv + IQ aguv = J-va. 2.2)

Applying Green’s identity to L. H. S. of (2.2), yields

J. aVu - Vv = J. aVuVv + I aguv + I va—u. (2.3)
Q Q Q oq On

Next substituting (2.3) into (2.2), we get

J aIVqu+J. va—u+J. aguv = va.
Q o on  Ja Q

(since v = 0 on 0Q), we obtain
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J. aquVv+J. aguv = jfv.
Q Q Q

Employing the interface condition, we get

J. aquVv+I aguv = J fv+J-jv ‘v’veH(l)(Q)
Q Q Q r

from whence we have the variational problem: find u € H}(Q) satisfying
S A, v) = (f,v) + (Ju V), (2.4)

where
Alu, v) = I aVuVy + J. aguv, (f,7)= va and (/, v)j = .[ Jv.
Q Q Q ‘ r
The following result is obtained concerning problem (2.4)

Regularity Résult

Theorem 1.1 (See [6, p. 4j). Let feI*(Q) and j e H'/Z(F). Then problem
(1.1)-(1.3) has a unique solution u € X (N Hy(Q) satisfying the a priori estimate

Fely <c(l 7 ”LZ(Q) +{| ”1—1‘/2(1“))
Proof. [See [4, p. 4] The result is well known for the case when j = 0.
The general case j € H 2 (Q), where Q is of class C2, is proved by finding a
function & € X N HY(Q) satisfying

[@]= o, [Bg_ﬂ=jonr

and
e lly < Cljllyvz )

Then the result of Theorem 1.1 follows by observing that v = u —# solves the

problem with freplaced with f +V - (V&) + ayu and j = 0.
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3. Finite Element Discretization

Finite element approximation of the problem (1.1)-(1.3) consists of the
triangulation t; of Q which is described thus: The domain Q; is approximated by a

domain Q{ with the polygonal boundary I'; with vertices all lying on the interface

I'. The domain Q, is approximated by Qé with polygonal exterior and interior
boundaries as 0Q and T; respectively. Hence, the triangulation t; of the domain Q

satisfies the conditions stated here under (as defined in p. 607 of [4])

(i) Q= U K.

ket

(i) If ky, ky €1, and k| # ky, then either k; Nky =& or ki Nky is a
common vertex or edge of both triangles.

(iii) Each triangle k € t; is either in Q! or Q) and intersects Q in at most two
points.

(iv) For each triangle k e1;, let p;, Py be the radii of its inscribed and
circumscribed circles respectively.

Let L = max{p : k € 1;}. It is assumed that, for some fixed /, > 0, there exists

two positive constants C; and C; independent of / such that
COpk <l Sclﬁk, Yk €T, VZG(O, lo)

We refer to triangles which have one or two vertices on I'" as interface triangles

and denote the set of all such interface triangles by tr-. Then, we write

Qr = UK.

Ker?

Suppose V; is a family of finite dimensional subspaces of H(I)(Q) which is defined
on t;. This family consists of piecewise linear functions vanishing on the boundary
0Q. Ciarlet ([7]) gave examples of such finite element spaces. A study of the effect
of the numerical quadrature involves defining an approximation of the original

bilinear form A(-, -) as follows: For each triangle K € 1;, 4;(x) = 4;. If K c Ql,
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i =1, 2, wedefine a; as a;(x) = a;,(x), VK € 1.

It therefore follows that the approximation 4; (-, -): H' (Q)xH'(Q)> R has

the definition

A;(u,v)= E I{ak(x)Vu-Vv+a0uv}dx, Vu,ve H' (Q).
K
Ker;

In the case of the inner product, the approximation on ¥; and its induced norm are

defined by

3
(u,v), = Z {%meas(K)Zu(QiK w(of )} (3.1
Kert; i=1
and o
hwll, =Cw.w))/?

where QK being the vertices for the triangle K.

The treatment of the interface function j on Q requires an approximation j;.

This is defined by

m;
Ji= Y @) Vel
I=1

with je C(T'), where {Q; };’i’l is the set of all nodes of the triangulation 1; lying on
the interface I" and { \u; }7':’1 is the set of standard nodal basis functions corresponding
to {Q; }7;‘1 in the space ;.

The following Lemma facilitates the application of the analysis on the

approximation 4; and the corresponding inner product.
Lemma 3.1 (See [4] p. 608). The V; the norms |-|2(q) and |-|, are

equivalent on V;. Furthermore, we have that for u, v e V; and f € H 2(Q),

| 4; (u,v)=A(u,v)|<Ch Z“ Vv, ”LZ(K)” Vu, “LZ(K)’
Ketp
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| (. v) = (u, v),| < Ch*|u L@l v 1)
| 9) = (0] < CR2| el v ey
Clv u: Ly S (v,v).

To approximate the interface function j(x) by its discrete analogue j;, we use

the next Lemma which describes the accuracy in the theory propounded by Chen and
Zou in [6].

Lemma 3.2. Suppose j € H>(T). Then the following inequality holds:

3/2y
<ch’ ”j"HZ(‘r)”Vi ”HI(Q}) Vv, eV,

i IrjvidS— jﬂ Jivi
where Qf— is the union of all the interface triangles.

The following Lemma is an interface approximation property (see [13]).

Lemma 3.3. Let Qf = UK . Then we have that
ketp

1/2
lau ey < CRY?

Suppose IT, : C(Q) — V; is the standard interpolation operator corresponding

to the space V;. As the solutions concerned are only in A 1(Q) globally, the standard

interpolation theory cannot be applied directly. Following the argument of Chen and
Zou (see [6, p. 8]), it is possible to obtain optimal error bounds of the interpolant IT;

for u € X as stated in the following Lemma:

Lemma 3.4 (see [6, p. 8] and [7]). If II;, : X — V; and u are the linear

interpolation operator and the solution to the interface problem (1.1)-(1.3)
respectively, then the following approximation properties hold true:

2-

hold true.
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Proof. For any u € X, suppose u; be the restriction of  on Q; for i =1, 2.
Since the interface is of class C2, the function u € H 2 (€2;) can be extended onto

the whole of Q, from whence we obtain the function #, € H 2(Q) such that #; = u;
on Q; and

The existence of such extensions, as obtained in [7] is established as follows: For any
triangle K € 1;\1[-, the standard finite element interpolation theory (cf. [7]) implies
that

. -
”u—niu ”Hm(K) < Ch m”u”,_,z(K), m =0, 1. (33)

.oy

From standard analysis, we have that dist(T, I;) < O(h3 ). Hence without loss of
generality, we may assume that meas(K,)<Ch> where Ki=KNQ,;, i=1,2, for

any element K e IT. Next using Holder’s inequality and meas(K ,-)SCh5 , 1=1,2

we obtain
=T | e,y < CHOP 24P oy 11 lymr k)

< Ch5(p—2)/4p“ u —H,-u “W”"‘”(K)

——5(4p-2)+1—m
<Ch *P ”u”Wl,P(K) (3.4)

for any p >2 and m =0, 1. The standard finite element interpolation theory (see

[7]) has been used in the last inequality. Now employing previously defined
extensions of #; of u; for m = 0,1 yields

o = TT;u ”Hm(Kl) =l - IT, ”/—["7(1<1)
<Ch*™M| 3y la2 k)

<ChE " ul),. (3.5)
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Conclusions of Lemma 3.4 are used in the last inequality. By means of estimates
(3.4) and (3.5) we obtain

Tl
()
P=2) 15 om
4-2 2 2 2
<cn*Mulf+c n Fel
Ke‘c?—
32710 5 om
4-2 2 2 2
<Ch 2 ul} v n 2P e,
KETF
Sp-10+4p—4mp
4-2 2 i
SCHMul eyl
Ke‘rf-
9p-10-4mp
4-2my . 2 2
<CHMulfe v 3oh Pl
Ke‘r*l—
9 5
4-2my 2 2T,
<ont " ul} vC Yk LS
: Kerl*—
9
4-2my . 2 hi_z'” p 2
can'2mpul} ey (ETCRUO T LAV
Ketr
4-2 2 %_2"’ ~ =
<o Mulre Y0 PR, o TR e GO
Kerf—

By application of Sobolev embedding inequalities for two dimensions (refer to [11]
and see that):

1 .
iy <CP Il @, Yp>2 weH'(@). i=12 37

from whence we conclude that for m = 0,1 andany p > 2 (p =10) in(3.7)
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l@illpoy <@ o,y < Clalq
@ (@) ()

IV, “LIO(/\',) <[V, ”LIO(QI) < (|| v, ”HI(Q,)‘
In view of the above estimates, it now follows that
i 1105y < Cl 23 lir2(q)-
This together with (3.6) gives

2 4-2 2
“u_Hiu “HIN(Q) SCh m”u”X

Then, Lemma 3.4 follows immediately from the estimates (3.3) and (3.8).
> &

4. Error Analysis

The following two results are derived for optimal order error estimates for
H'-norm and 2 -norm respectively.
Theorem 4.1. Let u, u; be the exact and finite element solutions with

quadrature respectively to problem (2.4). If f e H>(Q) and he H 2(), the

Jfollowing H Y-norm error estimate holds:
o - ul“Hl(Q) < Ch(|ully +”f“H2(Q) +| h”H2(r))-

Proof. The finite element approximation with quadrature is defined by; find

u; € V; such that
Arug, vi) = (S, ), + (v )r, Wi en, 4.1
where #; € V; and f; are the linear interpolant of 4 and frespectively.
Subtracting (2.4) from (4.1), for all v; € V) gives
A, vi) = A (uy, vy)
== v = =y = A(f v) = (f1, v} = (ks wy) = (1, virk  (42)

An appeal to Lemma 3.4 and (4.2), we have that
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2

=l

< C{A(Tyu — w, Wy —uy) + Aj(u —uy, T — )}

< Ch) u || | T =y | g ) + LAy (u = Ty, T = wy)

- A(u - Hlu, Hlu - ul)} + {AI(I_Ilu, Hlu - ul) - A(Hlu, Hlu - ul)}

+{(fys wy — Tqu), = (fys wp = )y + {(f = Tu) = (f wy — Tu)}

+{(hywy =T gu)p, = by =T}
= Chllu| x| Thu —up| gy + 11 + 12 + I3+ 14 + Is.

>
Using Lemma 3.4, we have that

| | < Chl ]|y T2 = w0 )
By Lemma 3.1, we get
| o] < CHlu ] I T = | )
and
| 151 < CH £ 1l T = 11
< CP| /|l g2yl Tl =t )
For /4, we have the following estimate,
| 14 < crl f I|H2(Q)|| up = ju ||L2(Q)
and Lemma 3.2 gives
| 1] < CH b2yl g = T gy

The result follows by combining (4.3)-(4.8) with Lemma 3.4.

4.3)

4.4

(4.5)

(4.6)

4.7)

4.8)

Theorem 4.2. Let u and u; be the solutions of the problem (1.1)-(1 .3) and (4.1),

respectively. For [ € H 2(Q) and he H 2(T), there exists a positive constant C
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independent of h such that
2
=112y SCH2 L +1 5 T2y + 12y
Proof. For the derivation of the Z?-norm from the /' -norm estimate a standard
trick is used. The argument requires the following steps.

(i) The statement of the interface problem, i.e., find we H}(Q) such that

alw,v) = —-u;,v) Vve HY(Q). ‘ 4.9)
(ii) Is the finite element approximations, i.e.,
Awp, v) = —uy,vy) Vv, w el (4.10)
(iii) The elliptic regularity results of' | ‘the interface problem (4.9), let
we X NHY(Q) with jump conditions [w], [BO g—:ﬂ =0 along T then the
following a priori estimate

Iwlly <Clu-l 20 @1

hold.

(iv) In relation to the derivation of Theorem 4.1 and using the a priori estimate

above, we obtain

Iw=willgq) < Chlu-w 12 (4.12)
and
(v) substituting v=u—-u; € H(l)(Q) in (4.9) and applying (4.2) gives the
following
L=y g = A=)

=Alw-wy,u—u; )+ A(wy, u—uy)
=(w—wp,u—u)+ A (w,up) = A(wy, up)

={(frw) =S w) )y =S wi )= (5 wp )}
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= WA wi)p, = (how)p
SClw=wi [y qylu—ully(q)

+Ch ZH Vw, ”L2 (K)“ Vuy, ”L"‘ (K) —{(f1,w )1 -(f1,w)}

ketp
A w) = (Fow))y = A wi )y, = (haowy )}

In the last inequality Lemma 3.1 is used.
(vi) By Theorem 4.1 and Lemmas 3.1-3.4, we get

— 2 -
TR
<Cllw-w “HI(Q)” w—up |y (Q)

+Ch Y Vw2 oyl Va2
ketp

+Ch (S 2 o) 12 @) vl
<Chlw=will oyl ullx +Chlw=wi |yl u=ul 51 (q)
+Chll u |l @)l w=wi g1 oy + Chllu =ur | g1 oy | W 4t ()
+Chll u || g1 oy I Wl oy +C2 (| £ 2 ) + 1Al @) Wiy
< Chllw=wi g1 oyl Ly +CR2 [ w =i 11 ()
(S N2y * 1A L2y + Chrlull gyl w=will g1 o)
+CR2(Lf N2 ) + 112 () 11 )

+ChR 2wy 02 [y +CR2 () L2 ) Hl D2 o)l - (413)
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In conclusion, using (4.11) and (4.12), we have

lu—wl?,  <Ch(|u

2 (Q) x s ”H2(Q) +[ A ﬂHz(Q))" u—upl|2 Q)"

Dividing both sides of the last inequality by |u—u, || 12(Q) gives the following

optimal order error estimate in % -norm

lu=url2 gy <CH? (el +15 D2 ) 1Bl @)

5. Example

We take the rectangle Q = (1.0)x (0.1 ‘as our computational domain. The
interface occurs at x =% so that =( , ) (0,1) and Q, = (— 1) 0, 1)
and the interface T' = Q; N Q,.

Consider the following ellipﬁc boundary-value problem on Q.

-V-(a;Vu;)+agju; = f; in Q;, i=1,2, (5.1
up =0 on 0QNQ, i=1,2, (5.2)
u ]r =up !r )

((a)Vuy -y )+{101“1 )-m | +((ayVuy -ny)+aguy ) ny | =0, (5.3)

where »; denotes the unit outer normal vector to Q;, i =1, 2.
For the exact solution, we choose
up (x, y)=sin(nx)sin(ny), (x,y)eQ,
and

uy (x, y)=sin(5nx)sin(ny), (x,y)eQ,.




40 VICTOR F. PAYNE, M. O. ADEWOLE and S. ADETONA AJIBOLA

The right-hand sides f; and f5, of (5.1) are determined from the choice of #; and

1

30 do1 = (n)?, and ag; = —(n)?.

u) respectively, with a; = % ay =

In conclusion, we remark that globally continuous, piecewise, linear . finite

element functions determined by the triangulations of Q as prescribed in Section 3,

were employed. In Table 5.1, [*-norm and H'-norm errors for various step size &
are shown with the data depicting

lu—up 2 (q) =0(h'?)
and
o =up ]l 1 () =0(h*%).
-

Figures 1 to 6 are attached with Figuers 1-4 showing the numerical solutions when

n=l poLl oLl h:éi

ively. Fi
3’ 6’ 2 7 respectively. Figures 5 and 6 are the graphs

of the error estimates in 4 with respect to the I?-norm and H'-norm.

Numerical result for the problem 5.

Table 5.1

(hy, hy) h "u_un||L2(Q) ””“un||H1(Q)

V2 V231 -2 -1
16° 16 3 | 9.2409 x 10 5.52526x10
V2 V2 | - -
EVRIEY) T6 24372 x10 2.80317 x10
V221 3 1
_64’—_64 3—2 6.1710x 10 1.40702 x 10
V2 V2311 -3 -2
128° 128 EZ 1.5470 x 10 7.04200 x 10
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Figure 3. The graph showing the numerical solution when h = 3—12 .
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Figure 4. The graph showing the numerical solution when & = 312 .
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L2-norm error
© o o o
8 8 8 8

(=]
o
b=

o
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w

Figure 5. The graph showing that L, -norm error is quadratic in A.
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Figure 6. The graph showing that 4 -norm error is linear in A.
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