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Abstract

It is well-known that the Banach contraction principle has been extended, generalised and
improved by researchers in this area of mathematics. In particular, one of the generalisation
of the Banach contraction principle is the F-contraction mapping. In this project, we review
the concept of F-contraction and Suzuki F-contraction in the frame work of complete
metric spaces. We also gave some applications and examples to validate the applicability of
our main results.
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Chapter 1

Introduction

1.1 Background of Study

Mathematics is an important branch of scientific knowledge that has many applications in

solving real life problems for humanity. Mathematics can further be divided into different

branches that have one quality according to theory application. One of the important

branches is Functional Analysis, which is applicable to many areas, such as solving the

problem of linear and non-linear partial differential equations, integral equations, nonlinear

matrix equations and so on. In addition functional analysis has a lot of applications in

numerical analysis, game theory, and optimisation problems. Combining analysis with

geometry is a valuable aspect in the form of functional analysis.

An important and useful tool in functional analysis is the fixed point theory. Analytical

fixed point theory and topological fixed point theory are the mainly two areas of fixed point

theory. This enhances the importance and significance of functional analysis since it is
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widespread in the solution of different types of linear and non-linear problems. Fixed point

theory is an area of research which has many applications in various direction of science,

such as Economics, Computer Science, Optimisation Theory, Variational Inequalities,

Engineering and so on. The fixed point theory is an essential area of study in pure and

applied mathematics. Optimisation problem such as minimisation problems, equilibrium

problems are effectively solved using the fixed point method. Now we define a fixed point

problem and give examples.

Definition 1.1. (Fixed point) Let X be any arbitrary space, a point x ∈ X is called a fixed

point of a mapping T : X → X if

T x = x, (1.1.1)

that is, a point x ∈ X which remains invariant under the action of the mapping T.

A trivial mapping with a fixed point is the identity mapping, that is I : X → X defined as

T x = x, for all x ∈ X .

Example 1.2. 1. Let T : R→ R be defined by T (x) = x2 + x−1. It is easy to see that

x = 1 and x =−1 are the fixed points of T, because T (1) = 1 and T (−1) =−1.

2. Let T : R→ R be defined by T (x) = x2 + x+3. It is also easy to see that T has no

fixed point.

In fixed point theory, other spaces of study other than metric spaces have been studied

by different authors. We have various generalised metric spaces such as partial metric
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Figure 1.1: A Fixed Point Graph of T (x) =
x2 + x−1 and T (x) = x.
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Figure 1.2: A Fixed Point Graph of T (x) =
x2 + x+3 and T (x) = x.

spaces, b-metric spaces, partial b-metric spaces, S- metric spaces, cone metric spaces, fuzzy

metric spaces, G-metric spaces, Gb-metric spaces, extended b metric spaces and so on.

Poincare (1886) was the first person who worked on fixed point theory, afterward the

equation f (a) = a was taken into consideration by Brouwer. This means that the Brouwer

fixed point theorem named after L.E.J.(Bertus) Brouwer was inspired by Henri Poincaré.

However, the fixed point theorem for a sphere asserts that any continuous mapping, the

sphere unto itself has a fixed point. The extension of Brouwer fixed point theorem is

the Kakutani fixed point theorem (Lassonde, 1990). The Brouwer’s theorem is about

3



continuous point-to-point function and the Kakutani theorem dealt with set valued function,

i.e point-to-set function.

The Banach fixed point theorem is the most cited and applied fixed point result in the

field of nonlinear analysis. Since it makes use of the iterative scheme, it can easily be

implemented on a computer system to find the fixed point of a contractive mapping. It

produces approximations of any required accuracy. Due to its simplicity and generality,

the Banach fixed point theorem has become a very potent tool in solving existence and

uniqueness problems in different areas of mathematical sciences, such as nonlinear Volterra

integral equations, dynamical programming, nonlinear integro-differential equations, game

theory, numerical approximations, random, ordinary and partial differential equations and

so on. The importance of the Banach contraction principle cannot be overemphasised in

the study of fixed point theory and its applications. Due to its fruitful applications, many

researchers have extended, generalised and improved the well celebrated Banach’s fixed

point theorem by considering classes of nonlinear mappings and classical spaces which are

more general than the class of a contraction mappings and metric spaces (see (Latif, 2014;

Ilić et al., 2011; Meyers, 1964; Jleli et al., 2014; Merryfield and Stein Jr, 2002; Sadiq Basha,

2010) and the references therein).

Theorem 1.3. (Contraction Mapping Principle) (Suzuki, 2008): Let X be a complete

metric space, c ∈ [0,1) and let T : X → X be a mapping such that for a,b ∈ X

d(Ta,T b) ≤ cd(a,b)

then T has a unique fixed point p ∈ X for each a ∈ X, lim
n→∞

T na = p.

4



That is, every contraction mapping on a complete metric space always has a unique fixed

point. The contraction mapping principle is also a Banach contraction principle or Banach

fixed point theorem (Pata, 2019). The iterative contraction principle that was used in the

proof of Banach Contraction was introduced by Picard.

Example 1.4. Let X = R with the usual metric,

d(x,y) = |x− y|

where (R,d) is the metric space.

Let f : R→ R be defined as f (x) = x
a +b. It is easy to see that f is a contraction if a > 1.

To see this, observe that

d( f x, f y) = | f x− f y|

=
∣∣∣x
a
+b−

(y
a
+b
)∣∣∣

=
∣∣∣x
a
− y

a

∣∣∣
=

1
a
|x− y|.

This is a contraction for a > 1 and we claim that x = ab
a−1 is the fixed point of f
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Proof of Claim:

f
(

ab
a−1

)
=

ab
a−1

=
ab

a−1

a
+b

=

(
ab

a−1
× 1

a

)
+b

=
b

a−1
+b

=
b+b(a−1)

a−1

=
ab

a−1
.

Hence, our claim is justified.

Example 1.5. We consider the Euclidean metric space (R2,d). The function given as

f : R2→ R2, we have

f (x,y) =
(x

a
+b,

y
c
+d
)

is a contraction for a > 1 and c > 1. Using the same approach from the previous example,

we claim that x = ab
a−1 , x = cd

c−1 is the fixed point of f.
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Proof of Claim:

f
(

ab
a−1

,
cd

c−1

)
=

(
ab

a−1
,

cd
c−1

)
=

(
ab

a−1

a
+b,

cd
c−1

c
+d

)

=

((
ab

a−1
× 1

a

)
+b,

(
cd

c−1
× 1

c

)
+d
)

=

(
b

a−1
+b,

d
c−1

+d
)

=

(
b+b(a−1)

a−1
,
d +d(c−1)

c−1

)
=

(
ab

a−1
,

cd
c−1

)
.

Hence, our claim is justified.

Some other types of the contractive mapping is the Kannan (1968). Kannan (1968, 1969)

established fixed point theorems that are independent of the Banach contraction principle.

It is well-known that the Banach contraction mappings are necessarily continuous on its

domain, but the class of Kannan mappings need not to be continuous. In addition, it was

established by Subrahmanyam (1975) that Kannan’s fixed point theorem characterises

metric completeness, meanwhile, Connell (1959) gave an example to show that the Banach

contraction principle does not characterise metric completeness.

Theorem 1.6. (Kannan, 1968): Let X be a metric space and let T : X → X be a mapping

such that there exists 0 < c < 1
2 for all x,y ∈ X,

d(T x,Ty)≤ c[d(x,T x)+d(y,Ty)] for all x,y ∈ X

7



Then, T has a unique fixed point p ∈ X, and for any x ∈ X the sequence {xn} of iterates

{T nx} defined by

xn+1 = T xn

converges to p for and x0 ∈ X.

Many authors worked on different generalised metric spaces and proved the Banach

contraction principles. The fixed point theorems are obtained by extending the contraction

conditions and then generalising the Banach Contraction Principle. Some generalisation of

contraction mapping principle are obtained by considering contraction conditions which

do not only include only the d(x,y) on the right hand side, but also the x and y under the

mapping T , where we have d(T x,y),d(T x,T x),d(x,Ty),d(y,Ty). Ordinary fixed point

theorems in this class are:

a) Chatterjea’s(1972) theorem (Rhoades, 1977), where the operator T is defined by;

d(T x,Ty)≤ c[d(x,Ty)+d(y,T x)] such that 0 < c <
1
2

is satisfied.

b) Zamfirescu’a (1972) theorem (Rhoades, 1977), where the operator T is defined by:

d(T x,Ty)≤ δd(x,y)+2δd(x,T x) sati f ying,

δ = max
{

a,
b

1−b
,

c
1− c

}
such that δ [0,1)

8



c) Ciric’s(1974) theorem (Rhoades, 1977), we then define the operator T as,

d(T x,Ty)≤ p.max{d(x,y),d(x,T x),d(y,Ty),d(y,T x),d(x,Ty)}

satisfying (0, 1
2) is considered then we have,

d) Rhodes’ (1974) theorem (Rhoades, 1977), where the operator T is defined by;

d(T x,Ty)≤ p.max
{

d(x,y),d(x,Ty),d(y,Ty),
d(y,T x)+d(x,Ty)

2

}

which satisfies (0, 1
2).

There are various extensions in this field, so it is impossible to discuss all of these generali-

sations. However, we’ll shortly discuss some of them.

The generalisation of metric space named as Partial metric space was introduced by

Matthews (1994) in which he proved the Banach contraction on this space (partial metric

space). Another space is the cone space which was introduced by Huang and Zhang

(2007). We have other fixed point results which were proved by different authors in this

space. Bakhtin (1989), for the first time, he introduced the idea of b-metric space, then

because of it’s importance, b-metric space is used for generalising contraction mapping

and proving some new results. Czerwik (1993) created different result for b-metric space.

For different purposes, the results were further extended and generalised in single and

multivalued mapping. Khamsi and Hussain (2010) proved some new results. Many

contraction conditions have been established after Banach Contraction principle, but we are
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going to base on the one we are using in our work.

The F-contraction was introduced by Wardowski (2012) and also proved a fixed point

theorem concerning F-contractions in different way as done by many authors. Wardowski

generalised the Banach contraction principle in many form, which we are going to show

in our result. Secelean (2013) established some fixed point results for the F-contraction

mappings using iterative method. In addition, Kumam and Piri (2014) generalised the fixed

point theory of Wardwoski for F-suzuki contraction by applying some weaker conditions

on the self map of a complete metric space. Abbas et al. (2013) extended the Wardwoski

and established new fixed point theorems using the the F- contraction mapping. Batra et al.

also contributed on the explanation of the graph using the idea of F-contraction. Cosentino

and Vetro (2014) proved some new results for self contraction mappings, on a complete

metric space. Also, on the complete metric space Vetro proved some important result using

F-contraction.

In this project, we review the work of Kumam and Piri (2014) and explicitly establish

the fixed point results obtained in this paper. In addition, we give some other examples and

applications to establish the fixed point results obtained in this paper in the framework of

complete metric spaces.

1.2 Statement of Problem

The notion of F-contraction as introduced by Wardowski (2012) has proven to be a great

tool for generalising the Banach contraction theorem and it has been well used to establish

existence and uniqueness of solution of differential and integral equations. Due to its

10



fruitful applications, researchers in this area have generalised the concept.

The problem this work will deal with is to give an explicit analysis of what seemingly

appeared unclear in the paper of Kumam and Piri (2014) and also provide some examples

and applications to establish the applicability of the F-contraction.

1.3 Objectives of Study

The aim of this project is to investigate fixed point theory on metric spaces and its application

proposed by Kumam and Piri (2014) and

a.) make explicit the ambiguities in the prove of Kumam and Piri (2014)

b.) discuss, through proof, the F-contraction introduced by Kumam and Piri (2014)

c.) give some examples and applications of the results.

1.4 Research Methodology

The F-contraction has been discussed in the paper ”Some fixed point theorem concerning

F-contraction in complete metric spaces” in Kumam and Piri (2014). We seek to explore

the explanation in this work.

1.5 Scope and limitation of Study

The scope of this work is all about the F-contraction introduced by Kumam and Piri (2014).

This work is limited to establishing the fixed point results for this mapping and proving

some examples and application.
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1.6 Significance of Study

The significance of F-contraction can not be over emphasised in the study of fixed point

theory and its application. Aside from generalising the well-known Banach contraction

principle, the F-contraction theorem is then used to show the existence and uniqueness of

ordinary and partial differential equations, integral equations, nonlinear matrix equations,

partial differential equations and so on.

1.7 Operational definition of terms

Vector Spaces: Let V be a non-empty set u,v,w are vectors. Then V is called a vector

space if there are exist two algebraic operation, vector addition and scalar multiplica-

tion such that the following condition are satisfied.

1. Closure property: u+v ∈V ∀u,v ∈ X .

2. Commutative property: u+v = u+v.

3. Associativity property: (u+v)+w = u+(v+w) ∀u,v,w ∈ X .

4. Zero vector: Let u ∈ X then there exist a zero vector given by 0, such that

u.0 = 0.u.

5. Additive inverse: Let u ∈ X then there exist a unique vector given by -u, such

that -u+u = u+(−u).

6. Closure property:Closure property: u.v ∈V ∀u,v ∈ X

7. Associativity property: (u.v).w = u.(v.w) ∀u,v,w ∈ X .

12



8. Distributivity(left): For any scalar c and vectors u,v ∈ X , p(u+v) = pu+ pv.

9. Distributivity(right):For any scalar p and q and vector u ∈ X , (p+q)u = pu+

qu.

10. Identity property: For any a ∈V , 1a =a.

Normed space: Let X be a vector space over the scalar field K. A norm on a vector

space X is a real-valued function ‖.‖, where, ‖.‖ : X → [0,∞) such that for any

x,y ∈ X ,λ ∈ K, the following axioms are satisfied;

1. ‖x‖ ≥ 0 (non-negative or real-valued)

2. ‖x‖= 0 iff x = 0

3. ‖λx‖= |λ |‖x‖

4. ‖x+ y‖ ≤ ‖x‖+‖y‖ (Triangle inequalities)

Hence a vector space X with a norm defined on it is called a Normed space.

Metric Space: Let X be a non-empty set and d : X×X → R is metric induced on X such

that the following axioms are satisfied for all x,y,z ∈ X .

1. d(x,y)≥ 0 ∀x,y ∈ X ; (non-negative or real-valued)

2. d(x,y) = 0 iff x = y;

3. d(x,y) = d(y,x) (symmetry)

4. d(x,y)≤ d(x,z)+d(z,y) (triangle inequality).

Fixed Point: Let T : X → X be a self mapping on a set X . A point a0 ∈ X is a fixed point

on the map T if Ta0 = a0.

13



Contraction map: Let (X ,d) be a metric space. A self mapping T : X → X satisfying

d(Ta,T b)≤ cd(a,b) for all a,b ∈ X where c ∈ [0,1).

Complete metric space: is a space X where every Cauchy sequence converges to a point

let say x ∈ X .

Closed set: A subset A of X is said to be closed if its complement which is in X is open,

i.e Ac = X−A is open.

Cauchy Sequence: is a sequence {an} in a metric space (X ,d) if ∀δ > 0, there exists a

positive number N which depends on δ such that d(an,am)< δ where m,n > N.

Convergent Sequence: A sequence {an} in a metric space (X ,d) is convergent to a point

say a ∈ X if limn→∞ d(an,a) = 0.

Convex space: A set X is said to be convex if for any two point a,b ∈ X , there exists no

points on the line between a and b that are not member of set X .

Continuous Mapping: Let (X ,d) be a metric space. A mapping T : X → X is said to be

continuous at a point a0 if for each ε > 0, there exists δ > 0, such that d(Ta,Ta0)≤

ε satis f ying d(a,a0)< δ .

Iteration: This is a repeated process usually with the target of approaching a particular

result. It can also be a computational approach in which a cycle of operation is

repeated.

Iterative methods: These are methods used to solve a particular mathematical problem

numerically.
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Throughout this project we denote R as the set of real numbers, R+ as the set of all positive

real numbers and N as the set of all natural numbers. We also denote the metric space with

a metric d as (X ,d) which we can also write in short as X .

The rest of this project is organised as follows: In Chapter 2, we present the review

of relevant literature to this work. Chapter 3 is devoted to the review of the theory of

F-contraction and F-Suzuki contraction mappings. Chapter 3 also contains some examples

and applications to establish the applicability of F-contraction and F-Suzuki contraction

maps while the project is concluded in Chapter 4.
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Chapter 2

Literature Review

The Banach fixed point theorem is the most cited and applied fixed point result in nonlinear

analysis since the contraction condition on the self mapping T is easy to verify, and

the only property needed on the metric space is the completeness. Also, since it makes

use of iterative scheme, it can easily be implemented on a computer system to find the

fixed point of the contractive mapping as it produces approximations of any required

accuracy. Due to its simplicity and generality, the Banach fixed point theorem has become

a prevalent tool in solving existence problems in different areas of mathematical sciences

such as nonlinear Volterra integral equations, dynamical programming, nonlinear integro-

differential equations, game theory, numerical approximations, random, ordinary and partial

differential equations and so on. The importance of the Banach contraction principle cannot

be over emphasised in the study of fixed point theory and its applications. Due to its fruitful

applications, many researchers have extended, generalised and improved the well celebrated

Banach’s fixed point theorem by considering classes of nonlinear mappings and classical
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spaces which are more general than the class of contraction mappings and metric spaces

(see (Latif, 2014; Ilić et al., 2011; Meyers, 1964; Jleli et al., 2014; Merryfield and Stein Jr,

2002; Sadiq Basha, 2010) and the references therein). In particular, Wardowski (2012)

introduced a class of mappings called the F-contractions. This class of mappings is defined

as follows:

Definition 2.1. Let (X ,d) be a metric space. A mapping T : X → X is said to be an

F-contraction if there exists λ > 0 such that for all x,y ∈ X ;

d(T x,Ty)> 0 =⇒ λ +F(d(T x,Ty))≤ F(d(x,y)), (2.0.1)

where F : R+→ R is a mapping satisfying the following conditions:

(F1) F is strictly increasing;

(F2) for all sequences {βn} ⊆ R+, limn→∞ βn = 0 if and only if limn→∞ F(βn) =−∞;

(F3) there exists c ∈ (0,1) such that limβ→0+ β cF(β ) = 0.

Let F denote a set of functions that satisfy (F1), (F2) and (F3).

Some well-known examples of the mapping F include;

1. F(t) = ln(t),

2. F(t) = −1√
t ,

3. F(t) = ln(t2 + t).

Wardowski established the following result:

17



Theorem 2.2. (Wardowski, 2012) Let (X ,d) be a complete metric space and T : X → X

be an F-contraction. Then, T has a unique fixed point x∗ ∈ X and for each x0 ∈ X , the

sequence {T nx0} converges to x∗.

Remark 2.3. (Wardowski, 2012) If we suppose that F(t) = ln(t), then an F-contraction

mapping becomes the Banach contraction mapping.

Kumam and Piri (2014) used the continuity condition instead of condition (F3) and proved

the following result:

Definition 2.4. Let X be a complete metric space and T : X → X be a self map on X .

Assume that there exists λ > 0 such that for all x,y ∈ X with T x 6= Ty,

1
2

d(x,T x)≤ d(x,y)⇒ λ +F(d(T x,Ty))≤ F(d(x,y)),

where F : R+→ R is continuous strictly increasing and infF =−∞. Then, T has a unique

fixed point z ∈ X , and for every x ∈ X , the sequence {T nx} converges to z.

Recently, Hussain and Ahmad (2017) generalised the result of Kumam and Piri (2014)

by introducing the notion of a Suzuki-Berinde F-contraction in the framework of a complete

metric space. They established the following result.

Theorem 2.5. (Hussain and Ahmad, 2017) Let X be a complete metric space and T : X→X

be a self-map on X . Assume that there exist L≥ 0 and λ > 0 such that for all x,y ∈ X with

18



T x 6= Ty,

1
2

d(x,T x)≤ d(x,y) ⇒

λ +F(d(T x,Ty))≤ F(d(x,y))+Lmin{d(x,T x),d(x,Ty),d(y,T x)},

where F : R+→ R is continuous strictly increasing and infF =−∞. Then, T has a unique

fixed point z ∈ X , and for every x ∈ X , the sequence {T nx} converges to z.

Secelean (2013) replaced the condition F2 in the definition of F-contraction with the

following condition:

(F ′1) infF =−∞ or, also by

(F ′2) there exists a sequence {βn} of positive real numbers such that

limn→∞ F(αn) =−∞.

He proved the following lemma.

Lemma 2.6. (Secelean, 2013) Let F : R+→ R be an increasing mapping and {βn} be a

sequence of positive integers. Then the following assertion hold:

1. if limn→∞ F(βn) =−∞ then limn→∞ βn = 0;

2. if infF =−∞ and limn→∞ βn = 0 then limn→∞ F(βn) =−∞.

Karapinar et al. (2015) introduced the notion of conditionally F-contraction and studied the

fixed point theorem of such mappings in the framework of metric-like spaces. They gave

the following definitions and results.
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Definition 2.7. (Karapinar et al., 2015) Let (X ,σ) be a metric-like space. A mapping

T : X → X is said to be a conditionally F-contraction of type (A) if there exist F ∈F and

λ > 0 such that, for all x,y ∈ X with σ(T x,Ty)> 0,

1
2

σ(x,T x)< σ(x,y)⇒ λ +F(σ(T x,Ty))≤ F(MT (x,y)),

where

MT (x,y) = max
{

σ(x,y),σ(x,T x),σ(y,Ty),
σ(x,Ty)+σ(y,T x)

4

}
.

Definition 2.8. (Karapinar et al., 2015) Let (X ,σ) be a metric-like space. A mapping

T : X → X is said to be a conditionally F-contraction of type (B) if there exist F ∈F and

λ > 0 such that, for all x,y ∈ X with σ(T x,Ty)> 0,

1
2σ(x,T x)< σ(x,y)⇒

λ +F(σ(T x,Ty))≤ F(max{σ(x,y),σ(x,T x),σ(y,Ty)}).

Theorem 2.9. (Karapinar et al., 2015) Let (X ,σ) be a complete metric-like space. If T is

a conditionally F-contraction of type (A), then T has a fixed point x∗ ∈ X .

Latif et al. (2015) proved some fixed point results for α−admissible mapping which

satisfies Suzuki type contractive condition in the frame work of b-metric spaces which was

introduced by Czerwik (1993). The authors gave some examples to verify the effectiveness

and the applicability of the main results. Furthermore, Karapinar et al. (2015) introduced the

concept of a generalised F-Suzuki type contraction in b-metric spaces and investigated the
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existence of fixed point for such mappings. The results presented generalises and improved

several results in the literature. The authors made it clear that the notion of b-metric is

a real generalisation of usual metric since a b- metric space is a metric space when s=1,

and then defined the generalised F-Suzuki type contraction mapping with respect to the

b-metric space (X ,d) with constant s≥ 1. A mapping T : X → X is called a generalised

F-Suzuki type contraction if there exists λ > 0 such that for all x,y ∈ X with x 6= y then;

1
2s

d(x,T x)< d(x,y) =⇒ λ +F(d(T x,Ty))≤ F(d(x,y))

where a mapping F : R+→ R satisfies the following conditions.

F1.) F is strictly increasing, that is ∀ α,β ∈ R+, such that α < β , then F(α)< F(β );

F2.) For each sequence {αn}n∈N of positive numbers, the limn→∞ αn = 0 if and only if the

limn→∞ F(αn) =−∞.

Then they proved that T has a unique fixed point x ∈ X ; that is T (x) = x.

Budhia et al. (2016) introduced two new concepts of an α-type almost F-contraction

and α-type F-Suzuki contraction and proved some fixed point theorems for such mappings

in a complete metric space. The authors gave some examples and the application to a

nonlinear fractional differential equation which are given to illustrate the usefulness of

the new theory. Afterward, Budhia et al. (2016) gave the definition of α-type almost

F-contraction as a mapping T : X → X and α : X ×X → {−∞}∪ (0,∞) be a symmetric

function. We say the mapping T is said to be α-type almost F-contraction if there exist
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F ∈F and λ > 0 and L≥ 0 then x,y ∈ X such that;

d(T x,Ty)> 0 =⇒ λ +α(x,y)F(d(T x,Ty))≤ F(d(x,y)+Ld(y,T x))

d(T x,Ty)> 0 =⇒ λ +α(x,y)F(d(T x,Ty))≤ F(d(x,y)+Ld(x,Ty))

also the definition of the F-Suzuki is given as a mapping T : X → X and α : X ×X →

{−∞} ∪ (0,∞) be a symmetric function. The mapping T is said to be α-type almost

F-Suzuki contraction if there exist F ∈F and λ > 0 then x,y ∈ X with T x 6= Ty such that;

1
2

d(x,T x)< d(x,y) =⇒ λ +α(x,y)F(d(T x,Ty))≤ F(d(x,y)

Let F denote a set of functions that satisfy (F1), (F2) and (F3). The proof of the first and

second result is that the map of the α-type almost F-contraction and α-type F-Suzuki

contraction respectively have a unique fixed point. In addition, Piri and Kumam (2016)

established some new fixed point theorems for generalised F-Suzuki contraction map-

pings in complete b-metric spaces and extended the fixed point results of Wardowski,

Wardowski and Dung, Dung and Hang and Piri and Kumam (Wardowski, 2012; Wardowski

and Van Dung, 2014; Van Dung and Le Hang, 2015; Kumam and Piri, 2014) respectively

by introducing a generalised F-Suzuki contraction in b-metric spaces. The authors gave

the contraction conditions for self-mapping T on a metric space (X ,d) which contains at

most five values d(x,y),d(x,T x),d(y,Ty),d(y,T x). Also adding recently four new values

d(T 2x,x),d(T 2x,T x),d(T 2x,y),d(T 2x,Ty) which is used in defining the new generalised

quasi-contraction condition (Kumam et al., 2015). The authors defined the F-weak con-

traction with respect to a complete metric space. Let mapping T : X → X be an F-weak
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contraction. If T or F is continuous, then T has a unique fixed point x∗ ∈ X and for every

x ∈ X then the sequence {T nx}n∈N converges to x∗.

Arooj (2017) introduced the notion F-contraction in b-metric space. He also stated

that F- contraction plays an important role in the extension and generalisation of Banach

Contraction principle. In this way, he also proved some fixed point results in complete

b-metric space using the F-contraction mapping. Then he further extended the fixed point

results for b- metric space using F-Suzuki contractions that is the generalisation of the

work of Wardowski’s result in F-contraction.

Chandok et al. (2018) compared the works written by many authors, and also introduced

the general concept of a generalised F-Suzuki type contraction mappings in b-metric spaces

and to established some fixed point theorems with respect to the b-metric spaces. The

main result unifies, complements, and generalises previous researches in the field. They

gave the following definition, a mapping T : X → X is called a generalised F-Suzuki type

contraction if there exist F ∈F such that for all x,y ∈ X with s≥ 1,x 6= y then;

1
2s

d(x,T x)< d(x,y) =⇒ F(sεd(T x,Ty))≤ F(MT (x,y))−φ(MT (x,y))

where φ ∈ ϕ and ε > 1 is a constant and

MT (x,y) = max

{
d(x,y),d(T 2x,y),

d(T x,y)+d(x,Ty)
2s

,

d(T 2x,x)+d(T 2x,Ty)
2s

,d(T 2x,Ty)+d(T 2x,T x),

d(T 2x,Ty)+d(T x,x),d(T x,y)+d(y,Ty)

}
.
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Clearly, if ε = 5, then the definition above is reduced to definition given by Kumam and

Piri (2014) . This implies that Chandok definition of F-Suzuki is a generalisation of

Kumam-Piri’s definition and many others in the literature.

Lashkaripour et al. (2019) introduced a new extension of F-Suzuki contraction map-

pings called generalised F-Suzuki contraction. The authors established the existence and

uniqueness theorem for the new type of F-contraction under a weaker condition and also

provide an affirmative answer to the open question raised by Rhoades (1977) regarding the

existence of a contractive definition which is good enough to generate a fixed point but does

not force the mapping to be continuous at the fixed point. The authors also provided some

examples to show that their main theorem is a generalisation of the previous result. At

the end, they gave an application to the boundary value problem of a non-linear fractional

differential equation for their results. In addition, Mehravaran et al. (2019) proposed the

concept of a dislocated Sb-metric space, followed by the new concepts of generalised

F-contraction and generalised F-Suzuki-contraction in the context of dislocated Sb-metric

spaces. In complete dislocated Sb-metric spaces, the authors proved several fixed point

theorems involving this contractions. They also provided several instances to demonstrate

the effectiveness and applicability of the method.

Gili’c et al. (2020) gave some proofs of recent main results in the context of generalised

F-Suzuki contraction mappings in b-metric spaces. They used a new approach to prove that

a Picard sequence is b-Cauchy. The results then generalises and improved many known

results in the existing space. The authors further introduced some new contractive condition

which are provided to illustrate the usability of the obtained theoretical result. Saleem

et al. (2020) also introduced the generalised Suzuki type F-contraction fuzzy mappings
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and also proved the existence of fixed fuzzy points for such mappings with respect to

complete metric space. Saleem et al. (2020) gave the generalised Suzuki type F-contraction

ordered fuzzy mapping. The authors gave examples to show the validity of the results

which is followed by different remarks about the comparison of the obtained results with

the existing result in the paper and some applications of the results to the domain of the

words. Futhermore, Sisodiya and Bhargav (2020) proved a new fixed point theorem for

generalised F-Suzuki-rational-type multivalued contraction with respect to the complete

metric space. The authors gave the result in this paper as the extension of the Banach

contraction principle, Suzuki contraction theorem (Suzuki, 2008) and Wardowski fixed

point theorem (Wardowski, 2012) and Piri and Kumam (Kumam and Piri, 2014). They also

gave the definition of F- contraction as in (Wardowski, 2012), and F-Suzuki as in (Kumam

and Piri, 2014).

Beg et al. (2021) introduced the concept of generalised orthogonal F-Suzuki contraction

mapping and proved some fixed point theorems on orthogonal b-metric spaces (Czerwik,

1993). Their results generalise and extend some well-known existing results. As the

product of the result, the authors show the existence of a unique solution of the first-order

ordinary differential equation as an application of their result. Furthermore, Mani et al.

(2021) introduced the concept of generalised orthogonal F-contraction and orthogonal

F-Suzuki contraction mappings and proved few fixed point theorems for a self-mapping in

an orthogonal metric space. The proved result generalises and extend some of the known

results in the field. The authors then gave an example to support their result which are

presented in the paper.

Furthermore, as applications of the main result, they applied their main results to show the
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existence of a unique solution of the first-order ordinary differential equation. In addition,

Farajzadeh et al. (2021) gave the notions of the generalised F-contraction, simulation

function, and admissible function are introduced to introduce the most recent generalisation

of the Banach contraction. They examined the presence and uniqueness of fixed points for

the newly designed contraction self-mapping on the entire metric spaces.Then the result of

the paper can be seen as a refinement of the primary result presented in the references.
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Chapter 3

F- Suzuki Contraction Mapping On

Metric Spaces

In this chapter, our aim is to prove the concepts regarding the F-contraction mappings

and F-Suzuki contraction mappings in a complete metric space which were considered

and defined by Wardowski (2012). We will also like to see the results of fixed point

for the F-Suzuki contractions that is the generalisation of Wardowski’s worked result in

F-contraction.

3.1 F-contraction

Wardowski (2012) introduced a new concept of contraction and prove a fixed point theorem

which generalises Banach contraction principle in the known result from the literature.

He also gave some examples which showed the validity of the results. He introduced a

new type of contraction which is the F-contraction and proved a new fixed point theorem
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concerning F-contraction. We Recall the definition of F-contraction as in Definition 2.1,

where the symbol F is used for a set containing all those function that satisfy (F1),(F2)

and (F3).

Remark 3.1. We can deduce that from (F1) in the definition of F-contraction and (2.0.1),

that any F-contraction must be continuous.

Wardowski also stated the modified version of the Banach contraction principle in Theorem

2.2.

Theorem 3.2 (F-contraction mapping). (Kumam and Piri, 2014) Let (X ,d) be a complete

metric space and the mapping T : X → X be an F-contraction. Then T has a unique fixed

point x∗ ∈ X and for x ∈ X the sequence {T mx}m∈N converges to x∗.

Proof. In order to demonstrate that T has a unique fixed point, consider the case where

arbitrary x∗ ∈ X is the fixed point of T . We then take a sequence {xm}m∈N ⊂ X as

xm+1 = T xm, m = 0,1,2,3...

We consider that,

βm = d(xm+1,xm) m = 0,1,2,3...

If there exist m0 ∈ N for which xm0+1 = xm0 , then

T xm0 = xm0

we have the theorem to be proved.
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Suppose that xm+1 6= xm then for every m ∈ N then,

βm > 0 ∀m ∈ N

In terms of (2.0.1), for λ > 0 we observe that

λ +F(d(T xm+1,T xm)) ≤ F(d(xm+1,xm))

F(d(T xm+1,T xm)) ≤ F(d(xm+1,xm))−λ

= F(d(T xm,T xm−1))−λ

≤ F(d(xm,xm−1))−2λ

= F(d(T xm−1,T xm−2))−2λ

≤ F(d(xm−1,xm−2))−3λ

...

≤ F(d(x1,x0))−mλ (3.1.1)

Then we have from (3.1.1),

F(βm)≤ F(βm−1)−λ ≤ F(βm−2)−2λ ≤ ....≤ F(β0)−mλ (3.1.2)

We then take the limm→∞, and have

lim
m→∞

F(βm) =−∞
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From condition (F2) in Definition 2.1 we have,

lim
m→∞

βm = 0 (3.1.3)

where the sequence {βm}m∈N is a positive number.

From condition (F3) in Definition 2.1, there exists c ∈ (0,1) such that

lim
m→∞

β
c
mF(βm) = 0 (3.1.4)

We multiply (3.1.2) through by β c
m, so we have

β
c
m(F(βm))≤ β

c
m(F(βm−1)−λ )≤ β

c
m(F(βm−2)−2λ )≤ ....≤ β

c
m(F(β0)−mλ )

and then we get,

β
c
m(F(βm))≤ β

c
m(F(β0)−mλ ) (3.1.5)

Subtracting β c
m(F(β0) from (3.1.5), we derive

β
c
m(F(βm)−F(β0))≤ β

c
m(F(β0)−mλ )−β

c
mF(β0) =−mβ

c
mλ (3.1.6)

Let m→ ∞ in (3.1.6), and using (3.1.3) and (3.1.4), we obtain

lim
m→∞

mβ
c
m = 0 (3.1.7)
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Now from (3.1.7), we observe that there exists m1 ∈ N such that,

mβ
c
m ≤ 1 ∀m≥ m1 (3.1.8)

and consequently we have from (3.1.8) that,

βm ≤
1

c
√

m
=

1

m
1
c
, ∀m≥ m1 (3.1.9)

We now want to prove that the sequence {xm}m∈N is a Cauchy sequence. Let us consider

a,b ∈ N such that a > b≥ m1. From the definition of metric, and from (3.1.9), by triangle

inequality, we have

d(xa,xb)≤ d(xa,xa−1)+d(xa−1,xa−2)+ ...+d(xb+1,xb)

Recall that,

βm = d(xm+1,xm) m = 0,1,2,3...

d(xa,xb) ≤ βa−1 +βa−2 + ...+βb <
∞

∑
m=1

βm ≤
∞

∑
m=1

1
c
√

m
=

∞

∑
m=1

1

m
1
c

(3.1.10)

From the convergence of the series ∑
∞
m=1

1
m

1
c

and from (3.1.10), it is obvious that {xm}m∈N

is a Cauchy sequence.

Since X is complete, there exists x0 ∈ X such that limm→∞ xm = x0. Now from continuity

31



of T , we have that

d(T x0,x0) = lim
m→∞

d(T xm,xm) = lim
m→∞

d(xm+1,xm) = 0

This implies that,

d(T x0,x0) = 0

T x0− x0 = 0,

T x0 = x0

Therefore, x0 is a fixed point of T .

To prove the Uniqueness, we assume that x1,x2 be two fixed points in the metric space X ,

where T x1 = x1 6= T x2 = x2. By definition of F-contraction we then have

λ +F(d(T x1,T x2))≤ F(d(x1,x2))

λ ≤ F(d(x1,x2))−F(d(T x1,T x2)) = 0 (3.1.11)

This is a contradiction, since λ > 0, therefore our assumption is wrong.

Hence T has a unique fixed point, which completes the proof.

Lemma 3.3. If {γc}c∈N is a bounded sequence of real numbers with the same limit d for

all convergent sub-sequences, then it is convergent and limc→∞ γc = d

Lemma 3.4. Let an increasing mapping be given as F : R+→R and the sequence {γc}c∈N

of positive real number. Then the following condition holds:
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a.) limc→∞ F(γc) =−∞, then limc→∞ γc = 0;

b.) if in f F =−∞, and limc→∞ γc = 0, then limc→∞ F(γc) =−∞

Proof. We first need to observe that {γc}c∈N is bounded.

Actually, if a sequence is not bounded above, then there exists a subsequence {γc(k)}k∈N

such that limc→∞ F(γc(k)) = ∞,

There is a k(δ ) ∈ N, such that for every δ > 0, we have γc(k) ≥ δ for all k ≥ k(δ ) Then by

(F1) in Definition 2.1

F(δ )≤ F(γc(k))

which implies

F(δ )≤ lim
k→∞

F(γc(k)) =−∞

This is a contradiction. Hence {γc}c∈N is bounded, and therefore has a convergent sub-

sequence.

Let the liml→∞ γc(l) = β , f orβ > 0 and {γc(l)}l∈N be a sub-sequence. For we choose δ > 0

and δ > β . Then there exists l ∈ N which depends on δ such that for all l ≥ l(δ ) we have

γc(l) ∈ (β −δ ,β +δ )

As a result, as F increases, hence

F(β −δ )≤ lim
l→∞

F(γc(l)) =−∞
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This is a contradiction that F(β −δ ) ∈ R.

As liml→∞ γc(l) = 0, then as a result of Lemma 3.3

lim
c→∞

γc = 0

Next we prove the second condition

Suppose that in f F =−∞ and limc→∞ γc = 0. Choose δ > 0 and β > 0 such that F(β )<−δ .

Then there is cβ ∈ N such that γc < β for all c≥ cβ

which implies that

F(γc)< F(β ) ∀ c≥ cβ

Hence,

lim
c→∞

F(γc) =−∞

After proving the above Lemma, Secelean (2013) showed that the condition (F2) in the

above definition can be equivalently written as the following condition;

(F ′2) in f F =−∞

or by

(F ′′2 ) there exist a sequence {γc}c∈N of R+, such that limc→∞ F(γc) =−∞

Instead of condition (F3) in Definition 2.1, we used (F ′3) to define F-contraction as follows:

(F ′3) The symbol F is continuous on (0,∞)
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F is generally used to denote a set of functions that satisfy the conditions (F1), (F ′2) and

(F ′3)

Theorem 3.5. Let T : X → X be a self mapping and (X ,d) be a complete metric space.

Assume F ∈F and there exist λ > 0, such that ∀a,b ∈ X,

d(Ta,T b)> 0 =⇒ λ +F(d(Ta,T b))≤ F(d(a,b))

holds. The sequence {T ca0}c∈N then converges to a unique fixed point a∗ ∈ X of T for

every a0 ∈ X

Proof. We choose a0 and define a sequence {ac}∞
c=1 by

a1 = Ta0, a2 = Ta1 = T 2a0, ..., ac+1 = Tac = T c+1a0 ∀c ∈ N

For some c ∈ N, if d(ac,Tac) = 0, then there is nothing to prove.

Suppose that for all, c ∈ N we have

0 < d(ac,Tac) = d(Tac−1,Tac) (3.1.12)

For some c ∈ N we get,

λ +F(d(Tac−1,Tac)) ≤ F(d(ac−1,ac))

F(d(Tac−1,Tac)) ≤ F(d(ac−1,ac))−λ
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Progressing with the same procedure of the previous proof, we have

λ +F(d(Tac−1,Tac)) ≤ F(d(ac−1,ac))

F(d(Tac−1,Tac)) ≤ F(d(ac−1,ac))−λ

= F(d(Tac−2,Tac−1))−λ

≤ F(d(ac−2,ac−1))−2λ

= F(d(Tac−3,Tac−2))−2λ

≤ F(d(ac−3,ac−2))−3λ

...

≤ F(d(a1,a0))− cλ (3.1.13)

Taking the limc→∞ on both sides, we get

lim
c→∞

F(d(ac−1,ac)) =−∞ (3.1.14)

Using (F2) from Definition 2.1 we obtain,

lim
c→∞

d(ac,Tac) = 0 (3.1.15)

We now want to show that {ac}∞
c=1 is a Cauchy sequence.

Using the contradictory argument, we assume that the sequence {m(c)}c∈N,{n(c)}c∈N of

natural numbers, and there exists δ > 0 such that ∀c ∈ N we have

m(c)> n(c)> c, d(am(c),an(c))≥ δ , d(am(c)−1,an(c))< δ (3.1.16)
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then, we obtain

δ ≤ d(am(c),an(c)) ≤ d(am(c),am(c)−1)+d(am(c)−1,an(c))

≤ d(am(c),am(c)−1)+δ

= d(am(c)−1,Tam(c)−1)+δ

which implies that

δ ≤ d(am(c),an(c))< d(am(c)−1,Tam(c)−1)+δ (3.1.17)

We have the limc→∞ and using (3.1.15) in the expression(3.1.17), we then obtain

lim
c→∞

d(am(c),an(c)) = δ (3.1.18)

On the other hand, as

lim
c→∞

d(ac,Tac) = 0 (3.1.19)

There exists N ∈ N, such that ∀c ∈ N

d(am(c),Tam(c))<
δ

4
and d(an(c),Tan(c))<

δ

4
(3.1.20)

We now then claim that for all c ∈ N we obtain

d(Tam(c),Tan(c)) = d(am(c)+1,an(c)+1)> 0 (3.1.21)
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Using the contradictory argument, there exists d ≥ N such that

d(am(c)+1,an(c)+1) = 0 (3.1.22)

From (3.1.16), (3.1.20) and (3.1.22) we get

δ ≤ d(am(d),an(d))≤ d(am(d),am(d)+1)+d(am(d)+1,an(d))

≤ d(am(d),am(d)+1)+d(am(d)+1,an(d)+1)+d(an(d)+1,an(d))

= d(am(d),Tam(d))+d(am(d)+1,an(d)+1)+d(Tan(d),an(d))

= d(am(d),Tam(d))+d(am(d)+1,an(d)+1)+d(an(d),Tan(d)) (symmetry)

<
δ

4
+0+

δ

4
=

δ

2

This is a contradiction, so there exists no such d. From (3.1.21) and for λ > 0, the

supposition of the theorem that

λ +d(Tam(c),Tan(c))≤ d(am(c),an(c)), ∀c≥ N (3.1.23)

Now from (F3′), (3.1.18) and (3.1.23), we have

λ +F(δ )≤ F(δ ) (3.1.24)

This is a contradiction. Therefore our assumption is wrong, hence {ac}∞
c=1 is a Cauchy

sequence.

Let (X ,d) be a complete metric space. Then there exists a sequence {ac}∞
c=1 which

38



converges to a point a ∈ X . Since T is continuous we obtain

d(Ta,a) = lim
c→∞

d(Tac,ac)

= lim
c→∞

d(ac+1,ac)

= d(a′,a′)

= 0

Which shows that T has a fixed point.

We’ll now show T has exactly one fixed point. Assume that a1,a2 are two different fixed

point of T , with a1 6= a2, i.e.

Ta1 = a1 6= Ta2 = a2

Then,

d(Ta1,Ta2) = d(a1,a2)> 0

this gives us,

F(d(a1,a2)) = F(d(Ta1,Ta2))

< λ +F(d(Ta1,Ta2))

≤ F(d(a1,a2))

This is a contradiction. As a result, our assumption of two fixed point is incorrect. Hence T
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has unique fixed point.

3.2 F- Suzuki Contraction

We want to discuss the fixed point theorem of F-Suzuki contraction. Recall the definition

of F-Suzuki as in contraction in Definition 2.4. We then state the following theorem;

Theorem 3.6 (F-Suzuki Contraction). (Kumam and Piri, 2014) Let (X ,d) be a complete

metric space and T : X → X be a self mapping. The sequence {T cx}∞
c=1 converges to a

point x∗ since T has a unique fixed point.

Proof. Assume x0 ∈ X and consider the sequence {xm}∞
m=1 as

x1 = T x0, x2 = T x1 = T 2x0, ... xm+1 = T xm = T m+1x0 ∀m ∈ N. (3.2.1)

There is nothing to prove if there exists m ∈ N in which d(xm,T xm). We presume

d(xm,T xm)> 0, for all m ∈ N

As a result, we have that ∀m ∈ N

1
2

d(xm,T xm)< d(xm,T xm)

In the case of any m ∈ N, we obtain

λ +F(d(T xm,T (T xm))≤ F(d(xm,T xm)) (3.2.2)
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which implies

F(d(xm+1,T xm+1))≤ F(d(xm,T xm))−λ

Repeating the same process, we get

F(d(xm,T xm)) ≤ F(d(xm−1,T xm−1)−λ

≤ F(d(xm−2,T xm−2)−2λ

≤ F(d(xm−3,T xm−3)−3λ

...

≤ F(d(x0,T x0)−mλ (3.2.3)

Taking the limit as m→ ∞ on both sides, we get

lim
m→∞

F(d(xm,T xm)) =−∞

By using (F2) in Definition 2.1, we have

lim
m→∞

d(xm,T xm) = 0. (3.2.4)

We now need to show that {xm}∞
m=1 is a Cauchy sequence.

Using the contradictory argument, we assume that the sequence {p(m)}m∈N,{q(m)}m∈N
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of natural numbers, and there exists δ > 0 such that ∀m ∈ N we have

p(m)> q(m)> m, d(xp(m),xq(m))≥ δ , d(xp(m)−1,xq(m))< δ (3.2.5)

then, we obtain

δ ≤ d(xp(m),xq(m)) ≤ d(xp(m),xp(m)−1)+d(xp(m)−1,xq(m))

≤ d(xp(m),xp(m)−1)+δ

= d(T xp(m)−1,xp(m)−1)+δ

= d(xp(m)−1,T xp(m)−1)+δ (symmetry)

which implies that

δ ≤ d(xp(m),xq(m))< d(xp(m)−1,T xp(m)−1)+δ (3.2.6)

We have the limm→∞ and using (3.2.4) in the expression (3.2.6), we then obtain

lim
m→∞

d(xp(m),xq(m)) = δ (3.2.7)

We take an integer N ∈ N from (3.2.4) and (3.2.7), such that

1
2

d(xp(m),T xp(m))<
1
2

δ < d(xp(m),xq(m)) ∀m≥ N

42



Since T is of F-Suzuki type, we have

λ +F(d(T xp(m),T xq(m)))≤ F(d(xp(m),xq(m))) ∀m ∈ N

From (3.2.1), we observe that

λ +F(d(T xp(m)+1,T xq(m)+1))≤ F(d(xp(m),xq(m))) ∀m ∈ N (3.2.8)

From (F ′3), (3.2.4) and (3.2.7) we get

λ +F(δ )≤ F(δ )

This is a contradiction. Which implies that the sequence {xm}∞
m=1 is a Cauchy sequence.

Since (X ,d) is complete, hence the sequence {xm}∞
m=1 converges to a point x∗ ∈ X . That is,

lim
m→∞

d(xm,x∗) = 0 (3.2.9)

For all m ∈ N, we claim that

1
2

d(xm,T xm)< d(xm,x∗) and
1
2

d(T xm,T (T xm))< d(T xm,x∗) (3.2.10)

Assuming that there exists some q ∈ N for which

1
2

d(xq,T xq)≥ d(xq,x∗) and
1
2

d(T xq,T (T xq))< d(T xq,x∗) (3.2.11)
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Hence,

2d(xq,x∗)≤ d(xq,T xq) ≤ d(xq,x∗)+d(x∗,T xq)

d(xq,x∗)+d(xq,x∗) ≤ d(xq,x∗)+d(x∗,T xq)

It follows from the last inequalities that

d(xq,x∗)≤ d(x∗,T xq) (3.2.12)

From (3.2.11) and (3.2.12), we have,

d(xq,x∗)≤ d(x∗,T xq)≤
1
2

d(T xq,T (T xq)) (3.2.13)

We see that,

1
2

d(xq,T xq)≤ d(xq,T xq)

and T , an F-Suzuki contraction. Then, we obtain

λ +F(d(T xq,T (T xq))≤ F(d(xq,T xq))

Furthermore, from (F1) in Definition 2.1, we have

d(T xq,T (T xq))< d(xq,T xq) (3.2.14)
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With (3.2.11), (3.2.13) and (3.2.14), we obtain

d(T xq,T (T xq)) < d(xq,T xq)

≤ d(xq,x∗)+d(x∗,T xq)

≤ 1
2

d(T xq,T (T xq))+
1
2

d(T xq,T (T xq))

=
1
2

d(T xq,T 2xq)+
1
2

d(T xq,T 2xq)

= d(T xq,T 2xq) (3.2.15)

This is a contradiction, Therefore (3.2.10) is satisfied.

Hence we can say that, either

λ +F(d(T xm,T x∗))≤ F(d(xm,x∗))

or

λ +F(d(T (T xm),T x∗))≤ F(d(T xm,x∗)) = F(d(xm+1,x∗))

is satisfied for all m ∈ N.

Actually, from (3.2.9), (F ′2) and Lemma 3.4, we obtain

lim
m→∞

F(d(T xm,T x∗)) =−∞
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also from (F ′2) and Lemma 3.4, we have

lim
m→∞

d(T xm,T x∗) = 0.

Which implies that,

d(x∗,T x∗) = lim
m→∞

d(xm+2,T x∗)

= lim
m→∞

d(T 2xm,T x∗)

= 0

Therefore T has a fixed point x∗

We then want to prove the uniqueness of T

Consider x∗,y∗ ∈ X to be two different fixed points of T which means that x∗ 6= y∗, then we

have

T x∗ = x∗ 6= y∗ = Ty∗

It is clear that

d(x∗,y∗)> 0

Then,

1
2

d(x∗,T x∗) = 0
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so,

0 =
1
2

d(x∗,T x∗)< d(x∗,y∗)

With the definition of the F- Suzuki contraction in Definition 2.4, we obtain

F(d(x∗,y∗)) = F(d(T x∗,Ty∗))

< λ +F(d(T x∗,Ty∗))

≤ F(d(x∗,y∗))

This is a contradiction. As a result, our assumption of two fixed point is incorrect. Hence T

has unique fixed point.

3.3 Applications and Examples

In this section, we presented some applications on the existence of a solution for a non-linear

integral equation and differential equation.

3.3.1 Application to Integral Equation

In this section, we present an application to the following integral equation of the form;

x(t) = g(t)+
b∫

a

M(t,s)K(t,x(s))ds (3.3.1)
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where M : [a,b]× [a,b]→R+, K : [a,b]×R→R and g : [a,b]→R are continuous functions.

Let X =C([a,b] ,R) be the space of all continuous real-valued functions defined on [a,b].

We defined d : X×X → R+ by d(x,y) = sup
t∈[a,b]

|x(t)− y(t)|. It is well-known that(X ,d) is

a complete metric space.

Theorem 3.7. Let X =C([a,b] ,R) and T : X → X be an operator defined by,

T x(t) = g(t)+
b∫

a

M(t,s)K(t,x(s))ds ∀t,s ∈ [a,b]

where g, M and K are defined above. Suppose that the following conditions hold:

1. There exists a continuous function φ : X → X → R+ such that

|K(s,x(s))−K(s,y(s))| ≤ φ(x,y)|x(s)− y(s)| ∀s ∈ [a,b] and x,y ∈ X .

2. There exists λ > 0, such that for all x,y ∈ X

b∫
a

M(t,s)φ(x,y)≤ e−λ .

Then the integral equation (3.3.1) has a solution.
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Proof. Now, observe

|T x(s)−Ty(s)| =

∣∣∣∣∣∣g(t)+
b∫

a

M(t,s)K(t,x(s))ds−g(t)−
b∫

a

M(t,s)K(t,y(s))ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣
b∫

a

M(t,s)K(t,x(s))ds−
b∫

a

M(t,s)K(t,y(s))ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣
b∫

a

M(t,s) [K(t,x(s))−K(t,y(s))]ds

∣∣∣∣∣∣
≤

b∫
a

|M(t,s) [K(t,x(s))−K(t,y(s))]|ds

≤
b∫

a

M(t,s)φ(x,y) |x(s)− y(s)|ds

≤ sup
s∈[a,b]

|x(s)− y(s)|
b∫

a

M(t,s)φ(x,y)ds

≤ d(x,y)e−λ

Thus, we have

d(T x,Ty) ≤ e−λ d(x,y)

=⇒ eλ d(T x,Ty) ≤ d(x,y).

Now, suppose that F(β ) = lnβ , we have that

λ + In(d(T x,Ty))≤ ln(d(x,y))
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Clearly, all the conditions in Theorem 3.7 are satisfied and so T has a fixed point. Hence,

the integral equation (3.3.1) has a solution.

3.3.2 Application to Second Order Differential Equation

In this section, we present an application on the existence of solution for the following

second order differential equation of the form;

x′′(t) =− f (t,x(t)) ∀t ∈ X , x′(0) = x(1) = 0 (3.3.2)

where I = [0,1] , f : I ×R→ R is a continuous function. Consider the space C(I) of

continuous function defined on I. It is well-known that C(I) with the metric

d(x,y) = sup
t∈[0,1]

|x(t)− y(t)|

is a complete metric metric space. In addition, it has been established that (3.3.2) is

equivalent to the integral equation

x(t) =
1∫

0

G(t,s) f (s,x(s))ds (3.3.3)

for t ∈ I, where G is the Green function defined by

G(t,s) =


(1− t)s i f 0≤ s≤ t ≤ 1

(1− s)t i f 0≤ t ≤ s≤ 1.

50



If x ∈C2(I), then x ∈C(I) is also solution to (3.3.2) if and only if it is a solution of (3.3.3).

Theorem 3.8. Let X =C(I) and T : X → X be the operator given by,

T (x) =
1∫

0

G(t,s) f (s,x(s))ds

for all x ∈ X and t ∈ [0,1]. Furthermore, suppose the following condition hold:

1. There exists function φ ,λ : I→ [0,∞),such that for all u,v ∈ X, we have

| f (s,u)− f (s,v)| ≤ 8φ(s)|u− v|

2. sup
s∈I

φ(s) = K1 ≤ e−λ ∀λ > 0

Then, the second order differential equation (3.3.2) has a solution.

Proof. We have

|T x(t)−Ty(t)| ≤
1∫

0

G(t,s) | f (s,x(s))− f (s,y(s))|ds

≤
1∫

0

G(t,s)8φ(s)|x(s)− y(s)|ds

≤ 8K1‖x− y‖ sup
t∈[0,1]

1∫
0

G(t,s)ds (3.3.4)
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We obtain that
1∫
0

G(t,s)ds = t(1−t)
2 as such, we obtain

sup
t∈[0,1]

1∫
0

G(t,s)ds =
1
8

(3.3.5)

Applying (3.3.5) in (3.3.4), we obtain

d(T x,Ty)≤ e−λ d(x,y)

Then, we have that eλ d(T x,Ty)≤ d(x,y).

Now, suppose that F(β ) = lnβ , we have

λ + In(d(T x,Ty))≤ ln(d(x,y))

Clearly, all the conditions in Theorem 3.8 are satisfied, and so T has a fixed point. Hence,

the second order differential equation (3.3.2) has a solution.

3.3.3 Examples

In this section, we present some examples of F-contraction to show that it generalises some

contractive mapping in the literature.

Example 3.9. Let F : R+→ R be given as F(β ) = lnβ . It is obvious that F satisfies the

following condition (F1),(F2) and (F3) for any c ∈ (0,1). For each mapping T : X → X
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satisfying (2.0.1) is an F-contraction. From the definition of F-contraction such that,

F(d(T x,Ty)) = ln(d(T x,Ty))

F(d(x,y)) = ln(d(x,y))

we obtain,

λ + ln(d(T x,Ty)) ≤ ln(d(x,y))

eλ .d(T x,Ty) ≤ d(x,y)

d(T x,Ty) ≤ e−λ d(x,y) ∀x,y ∈ X (3.3.6)

It is obvious that for x,y ∈ X such that T x = Ty the inequality (3.3.6) also is satisfied. This

implies that T is a Banach contraction.

Example 3.10. Given F(β ) = lnβ +β , β > 0. It is obvious that F satisfies the following

condition (F1),(F2) and (F3) for any c ∈ (1
2 ,1). In this case, each F-contraction T satisfies

λ + ln(d(T x,Ty))+d(T x,Ty) ≤ ln(d(x,y))+d(x,y)

eλ .ed(T x,Ty)d(T x,Ty) ≤ d(x,y).ed(x,y)

d(T x,Ty)ed(T x,Ty)

d(x,y).ed(x,y)
≤ e−λ

d(T x,Ty)
d(x,y)

.ed(T x,Ty)−d(x,y) ≤ e−λ . (3.3.7)
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Chapter 4

Conclusion

This project presents a comprehensive review of the F-contraction and Suzuki F-contraction

mappings in the frame work of metric spaces. It was established that the notion of F-

contraction is a generalisation of the Banach contraction and some other contractive map-

pings in the literature. We have systematically presented our study, which we structure

into 4 chapters. In Chapter 1, we give a brief background of our study, discuss the aims

and objectives, limitation of the study, scope of the study, statement of problem and re-

search methodology. In Chapter 2, we gave a detailed literature review on the notion of

F-contraction and Suzuki F-contraction and its generalisation. In Chapter 3, which is our

main result of this project, the results obtained in this chapter is a detailed review of the

work of Piri and Kumam(Kumam and Piri, 2014). In addition, we gave some examples and

applications to establish the applicability of the F-contraction and Suzuki-F-contraction.
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