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CHAPTER ONE
INTRODUCTION
[bookmark: _Toc26775382][bookmark: _Toc26943599]1.1 Computer Vision
Computer vision, often abbreviated as CV, is defined as a field of study that seeks to develop techniques to help computers “see” and understand the content of digital images such as photographs and videos. It is a multidisciplinary field that could broadly be called a subfield of artificial intelligence and machine learning, which may involve the use of specialized methods and make use of general learning algorithms.
Computer vision tasks include methods for acquiring, processing, analyzing and understanding digital images, and extraction of high-dimensional data from the real world in order to produce numerical or symbolic information. Understanding in this context means the transformation of visual images (the input of the retina) into descriptions of the world that can interface with other thought processes and elicit appropriate action. This image understanding can be seen as the disentangling of symbolic information from image data using models constructed with the aid of geometry, physics, statistics, and learning theory. 
Computer vision covers the core technology of automated image analysis which is used in many fields. Machine vision usually refers to a process of combining automated image analysis with other methods and technologies to provide automated inspection and robot guidance in industrial applications. In many computer-vision applications, the computers are pre-programmed to solve a particular task, but methods based on learning are now becoming increasingly common. Examples of applications of computer vision include systems for:
· Automatic inspection, e.g., in manufacturing applications;
· Assisting humans in identification tasks, e.g., a species identification system;
· Controlling processes, e.g., an industrial robot;
· Detecting events, e.g., for visual surveillance or people counting;
· Interaction, e.g., as the input to a device for computer-human interaction;
· Modelling objects or environments, e.g., medical image analysis or topographical modelling;
· Navigation, e.g., by an autonomous vehicle or mobile robot; and
· Organizing information, e.g., for indexing databases of images and image sequences.
One of the most prominent application fields is medical computer vision, or medical image processing, characterized by the extraction of information from image data to diagnose a patient. A second application area in computer vision is in industry, sometimes called machine vision, where information is extracted for the purpose of supporting a manufacturing process. 
[bookmark: _Toc26775383][bookmark: _Toc26943600]1.2 Typical Computer Vision Tasks
Every application area of computer vision task; more or fewer measurement problems or processing problems, which can be solved using a variety of methods. Some examples of typical computer vision tasks are:
[bookmark: _Toc26775384][bookmark: _Toc26943601]1.2.1 Recognition
The classical problem in computer vision, image processing, and machine vision is determining whether or not the image data contains some specific object, feature, or activity. Different varieties of the recognition problem include:
· Object recognition (also called object classification) 
· Identification – an individual instance of an object is recognized. Examples include identification of a specific person's face or fingerprint, identification of handwritten digits, or identification of a specific vehicle
· Detection – the image data are scanned for a specific condition. Examples include detection of possible abnormal cells or tissues in medical images or detection of a vehicle in an automatic road toll system.
Currently, the best algorithms for such tasks are based on networks. The best algorithms still struggle with objects that are small or thin, such as a small ant on a stem of a flower or a person holding a quill in their hand. They also have trouble with images that have been distorted with filters (an increasingly common phenomenon with modern digital cameras).
Other specialized tasks based on recognition exist such as:
· Optical character recognition (OCR) – identifying characters in images of printed or handwritten text, usually with a view to encoding the text in a format more amenable to editing or indexing (e.g. ASCII).
· Object Verification
· Object Classification
· Object Segmentation
· Facial recognition
[bookmark: _Toc26775385][bookmark: _Toc26943602]1.2.2 Motion analysis
Several tasks relate to motion estimation where an image sequence is processed to produce an estimate of the velocity either at each point in the image or in the 3D scene or even of the camera that produces the images. Examples of such tasks are:
· Ego motion – determining the 3D rigid motion (rotation and translation) of the camera from an image sequence produced by the camera.
· Tracking – following the movements of a (usually) smaller set of interest points or objects (e.g., vehicles, humans or other organisms) in the image sequence.
· Optical flow – to determine, for each point in the image, how that point is moving relative to the image plane, i.e., its apparent motion. This motion is a result both of how the corresponding 3D point is moving in the scene and how the camera is moving relative to the scene.
[bookmark: _Toc26775386][bookmark: _Toc26943603]1.2.3 Image restoration
The aim of image restoration is the removal of noise (sensor noise, motion blur, etc.) from images. The simplest possible approach for noise removal is various types of filters such as low-pass filters or median filters. 
[bookmark: _Toc26775387][bookmark: _Toc26943604]1.2.4 Scene reconstruction
Given one or (typically) more images of a scene, or a video, scene reconstruction aims at computing a 3D model of the scene. In the simplest case, the model can be a set of 3D points. 
[bookmark: _Toc26775388][bookmark: _Toc26943605]1.2.5 System methods
The organization of a computer vision system is highly application-dependent. The specific implementation of a computer vision system also depends on whether its functionality is pre-specified or if some part of it can be learned or modified during operation. Many functions are unique to the application. However, there are typical functions that are found in many computer vision systems.
· Image acquisition
· Pre-processing
· Feature extraction
· Detection/segmentation
· High-level processing
· Decision making
[bookmark: _Toc26775389][bookmark: _Toc26943606]1.3 Image Pre-processing
The main goal of preprocessing is to enrich the visual look of the images. Preprocessing mainly aims to remove the clamour, stabilizing the intensity of the images and clear the artefacts. Image preprocessing is the technique of enhancing the image data prior to computational processing. In general, image preprocessing can be carried out in any one of the following forms:


[bookmark: _Toc26775390][bookmark: _Toc26943607]1.3.1 Image resampling
	Altering the pixel dimensions of the image is called ‘resampling.’ Image resampling is a procedure to transform a sampled image from one coordinate to another. Using the mapping function of the dimensional transformation, the two coordinate systems are correlated to each other. The reverse mapping function is applied to the output pixel so that the obtained ‘resampling pixel’ is reversed to obtain the original input pixel. In some cases, the resampling pixel does not match with the input pixel. In order to overcome this, a matching domain must be created for the input pixel and the range of the mapping function. This can be accomplished by digitizing the image into a continuous surface by means of ‘image reconstruction’. After the reconstruction of input, it is ready to be resampled at any position
[bookmark: _Toc26775391][bookmark: _Toc26943608]1.3.2 Contrast Enhancement
	To make the image more suitable for definite applications, contrast enhancement must be used. It improves the visibility and the transparency of the image and the original image is more acceptable to process the computer. As the image values of the low contrast images are extreme, the contrast enhancement stretches the intensity of the pixel.
[bookmark: _Toc26775392][bookmark: _Toc26943609]1.3.3 Noise Removal
 At the time of image acquisition or during transmission, noises are produced. Several factors are liable for the formation of noise while acquisition or transmission. Subject to the type of noise the image can affect, it degrades the image quantification to a different range. In general, the noises in the image can be classified as I) impulse noise (salt & pepper noise) - alternative black and white marks appear on the image hence it names as salt & pepper. This may be due to the sharp and abrupt deviations in the image signal. ii) Gaussian noise (Amplifier noise)- each noisy pixel in the image is the summation of the correct pixel value and arbitrary Gaussian distributed value. The clamour produced due to this type is independent of the pixel intensity.
[bookmark: _Toc26775393][bookmark: _Toc26943610]1.4 Aim and Objectives
	The aim of this study is to identify and classify object images using Convolutional Neural Network. The objectives are to:
1. Select and formulate an algorithm
2. Develop a model
3. Evaluate the model
[bookmark: _Toc26775394][bookmark: _Toc26943611]1.5 Methodology
In order to have a good understanding of the subject matter, a literature review on object detection was carried out. The backbone for programming to be used in Machine Learning (Python). The algorithms used in this project is the Convolutional Neural Network. While using different pre-trained models to build the hidden layers.


[bookmark: _Toc26775395][bookmark: _Toc26776391][bookmark: _Toc26776732][bookmark: _Toc26943612]LITERATURE REVIEW
[bookmark: _Toc26775396][bookmark: _Toc26943613]2.1 Review of Artificial Intelligence
In computer science, artificial intelligence (AI), sometimes called machine intelligence, is intelligence demonstrated by machines, in contrast to the natural intelligence displayed by humans.  Artificial intelligence (AI) is the simulation of human intelligence processes by machines, especially computer systems. These processes include learning (the acquisition of data and rules for using the data), reasoning (using rules to reach approximate or definite conclusions) and self-correction. Particular applications of AI include expert systems, speech recognition and machine vision.
Examples of Artificial Intelligence (AI) technologies
AI is incorporated into a variety of different types of technology. Here are seven examples:
1. Automation: What makes a system or process function automatically. For example, robotic process automation (RPA) can be programmed to perform high-volume, repeatable tasks that humans normally performed. RPA is different from IT automation in that it can adapt to changing circumstances.
2. Robotics: A field of engineering focused on the design and manufacturing of robots. Robots are often used to perform tasks that are difficult for humans to perform or perform consistently. They are used in assembly lines for car production or by NASA to move large objects in space. Researchers are also using machine learning to build robots that can interact in social settings.
3. Self-driving cars: These use a combination of computer vision, image recognition and deep learning to build automated skill at piloting a vehicle while staying in a given lane and avoiding unexpected obstructions, such as pedestrians.
4. Machine learning: The science of getting a computer to act without programming. Deep learning is a subset of machine learning that, in very simple terms, can be thought of as the automation of predictive analytics. There are three types of machine learning algorithms:
I. Supervised learning: Data sets are labelled so that patterns can be detected and used to label new data sets
II. Unsupervised learning: Data sets aren't labelled and are sorted according to similarities or differences.
III. Reinforcement learning: Data sets aren't labelled but, after performing an action or several actions, the AI system is given feedback
5. Machine vision: The science of allowing computers to see. This technology captures and analyzes visual data using a camera, analogue-to-digital conversion and digital signal processing. It is often compared to human eyesight, but machine vision isn't bound by biology and can be programmed to see through walls, for example. It is used in a range of applications from signature identification to medical image analysis. Computer vision, which is focused on machine-based image processing, is often conflated with machine vision.
6. Natural language processing (NLP): The processing of human -- and not a computer -- language by a computer program. One of the older and best-known examples of NLP is spam detection, which looks at the subject line and the text of an email and decides if it's junk. Current approaches to NLP are based on machine learning. NLP tasks include text translation, sentiment analysis and speech recognition.
[bookmark: _Toc26775397][bookmark: _Toc26943614]2.2 Machine Learning
Machine learning (ML) is the scientific study of algorithms and statistical models that computer systems use to perform a specific task. Machine learning algorithms build a mathematical model based on sample data, known as "training data", in order to make predictions or decisions without being explicitly programmed to perform the task. Machine learning algorithms are used in a wide variety of applications, such as email filtering and computer vision, where it is difficult or infeasible to develop a conventional algorithm for effectively performing the task.
Some machine learning techniques:
AI algorithms are regularly classified as supervised or unsupervised 
Supervised AI algorithms can apply what has been realized in the past to new data utilizing named guides to foresee future occasions. Beginning from the examination of a known training dataset, the learning algorithm creates an induced capacity to make expectations about the yield esteems. The framework can give focuses on any new contribution after adequate preparing. The learning algorithm can likewise contrast its yield and the correct, expected yield and discover blunders so as to adjust the model in like manner. 
In contrast, unsupervised AI algorithms are utilized when the data used to prepare is neither characterized nor labelled. Unsupervised learning thinks about how frameworks can deduce a capacity to depict a concealed structure from unlabeled data. The framework doesn't make sense of the correct output; however, it investigates the data and can draw inferences from datasets to portray concealed structures from unlabeled data. 
Semi-managed AI algorithms fall someplace in the middle of supervised and unsupervised learning since they utilize both labelled and unlabeled data for preparing – regularly a modest quantity of labelled data and a lot of unlabeled data. The frameworks that utilization this technique can impressively improve learning precision. More often than not, semi-regulated learning is picked when the gained named data skilled and applicable assets so as to prepare it/gain from it. Something else, acquiring unlabeled data, by and large, doesn't require extra assets. 
Reinforcement AI algorithms is a learning technique that associates with its condition by creating activities and finds mistakes or rewards. Experimentation search and deferred reward are the most important qualities of reinforcement learning. This strategy enables machines and programming specialists to consequently decide the perfect conduct inside a particular setting so as to boost its presentation. Basic reward input is required for the specialist to realize which activity is ideal; this is known as the support signal. 
AI empowers investigation of huge amounts of data. While it by and large conveys quicker, progressively exact outcomes so as to recognize beneficial chances or hazardous dangers, it might likewise require extra time and assets to prepare it appropriately. Joining AI with AI and subjective advancements can make it much progressively viable in preparing huge volumes of data.
[bookmark: _Toc26775398][bookmark: _Toc26943615]2.3 Machine learning Algorithms
[bookmark: _Toc26775399][bookmark: _Toc26943616]2.3.1 Principal Component Analysis (PCA)/SVD
This is one of the basic machine learning algorithms. It allows you to reduce the dimension of the data, losing the least amount of information. It is used in many areas, such as object recognition, computer vision, data compression, etc. The computation of the principal components is reduced to calculating the eigenvectors and eigenvalues of the covariance matrix of the original data or to the singular decomposition of the data matrix.
We can express several signs through one, merge, so to speak, and work already with a simpler model. Of course, most likely, it will not be possible to avoid information loss, but the PCA method will help us to minimize it.
[image: svd]
[bookmark: _Toc26943648]Figure 2‑1: SVD — this is a way to calculate ordered components
.
[bookmark: _Toc26775400]2.3.2.1 Least Squares and Polynomial Fitting
The method of least squares is a mathematical method used to solve various problems, based on minimizing the sum of squares of deviations of some functions from the desired variables. It can be used to “solve” overdetermined systems of equations (when the number of equations exceeds the number of unknowns), to search for solutions in the case of ordinary (not overdetermined) nonlinear systems of equations, as well as to approximate the point values of a certain function.
[bookmark: _Toc26775401][bookmark: _Toc26943617]2.3.2.2 Constrained Linear Regression
The least-squares method can confuse overshoots, false fields, etc. Restrictions are needed to reduce the variance of the line that we put in the data set. The correct solution is to match the linear regression model, which ensures that the weights do not behave “badly”. Models can be L1 (LASSO) or L2 (Ridge Regression) or both (elastic regression).
[bookmark: _Toc26775402][bookmark: _Toc26943618]2.3.3 K-Means Clustering
Clustering (or cluster analysis) is the task of breaking up a set of objects into groups called clusters. Inside each group, there should be “similar” objects, and the objects of different groups should be as different as possible. The main difference between clustering and classification is that the list of groups is not clearly defined and is determined during the operation of the algorithm.
The k-means algorithm is the simplest, but at the same time, rather an inaccurate clustering method in the classical implementation. It splits the set of elements of a vector space into a previously known number of clusters k.
The algorithm seeks to minimize the standard deviation at the points of each cluster. The basic idea is that at each iteration the centre of mass is recalculated for each cluster obtained in the previous step, then the vectors are divided into clusters again according to which of the new centres was closer in the selected metric. The algorithm terminates when no cluster changes at any iteration.
[image: 0_tEDsk2ILVyYrTxlf]
[bookmark: _Toc26943649]Figure 2‑2: K-Means Clustering
[bookmark: _Toc26775403][bookmark: _Toc26943619]2.3.4 Logistic Regression
Logistic regression is limited to linear regression with non-linearity (sigmoid function or tanh is mainly used) after applying weights, therefore, the output limit is close to + / - classes (which equals 1 and 0 in the case of sigmoid). Cross-entropy loss functions are optimized using the gradient descent method.
Note: logistic regression is used for classification, not regression. In general, it is similar to a single-layer neural network. Learned using optimization techniques such as gradient descent or L-BFGS. NLP developers often use it, calling it “the maximum entropy classification method”.
[bookmark: _Toc26775404][bookmark: _Toc26943620]2.3.5 Support Vector Machines (SVM)
SVM is a linear model, such as linear/logistic regression. The difference is that it has a margin-based loss function. You can optimize the loss function using optimization methods, for example, L-BFGS or SGD.
[image: ]
[bookmark: _Toc26943650]Figure 2‑3: Support Vector Machine
[bookmark: _Toc26775405][bookmark: _Toc26943621]2.3.6 Feed-Forward Neural Networks
Basically, these are multi-level logistic regression classifiers. Many layers of scales are separated by non-linearities (sigmoid, tanh, relu + SoftMax and cool new selu). They are also called multilayer perceptron. FFNN can be used for classifying and “learning without a teacher” as autoencoders.
[image: ]
[bookmark: _Toc26943651]Figure 2‑4: Example Feed-Forward Neural Network
[bookmark: _Toc26943622]2.3.7 Recurrent Neural Networks (RNNs)
RNNs model sequences by applying the same set of weights recursively to the state of the aggregator at time t and input at time t. Pure RNNs are rarely used now, but its analogues, for example, LSTM and GRU, are the most up-to-date in most sequence modelling problems.
LSTM, which is used instead of a simple dense layer in pure RNN.
[image: ]
[bookmark: _Toc26943652]Figure 2‑5: LSTM
Use RNN for any task of text classification, machine translation, language modelling.
[bookmark: _Toc26775407][bookmark: _Toc26943623]2.3.8 Decision Trees
One of the most common machine learning algorithms. Used in statistics and data analysis for predictive models. The structure represents the “leaves” and “branches”. Attributes of the objective function depend on the “branches” of the decision tree, the values of the objective function are recorded in the “leaves”, and the remaining nodes contain attributes for which the cases differ.
To classify a new case, you need to go down the tree to the leaf and give the appropriate value. The goal is to create a model that predicts the value of the target variable based on several input variables.
[image: ]
[bookmark: _Toc26943653]Figure 2‑6: Pictorial representation of Decision Tree
[bookmark: _Toc26775408][bookmark: _Toc26943624]2.3.9 Convolutional Neural Networks
Practically all modern achievements in the field of machine learning were achieved by dint of convolutional neural networks. They are used for image classification, object detection, or even image segmentation. Invented by Jan Lekun at the beginning of the 1990s, networks have convolutional layers that act as hierarchical object extractors. You can use them for working with text (and even for working with graphics).
[image: ]
[bookmark: _Toc26943654]Figure 2‑7: Example of Convolutional Neural Network
CNN’s use relatively little pre-processing compared to other image classification algorithms. They have applications in image and video recognition, recommender systems, image classification, medical image analysis, and natural language processing. Convolution is a specialized kind of linear operation. Convolutional networks are simply neural networks that use convolution in place of general matrix multiplication in at least one of their layers. The convolutional neural network, or CNN for short, is a specialized type of neural network model designed for working with two-dimensional image data, although they can be used with one-dimensional and three-dimensional data.
Computers see an input image as an array of pixels and it depends on the image resolution. Based on the image resolution, it will see h * w * d (h = Height, w = Width, d = Dimension). E.g., An image of 6 x 6 x 3 array of a matrix of RGB (3 refers to RGB values) and an image of 4 x 4 x 1 array of a matrix of a grayscale image.
Technically, deep learning CNN models to train and test, each input image will pass it through a series of convolution layers with filters (Kernels), Pooling, fully connected layers (FC) and apply SoftMax function to classify an object with probabilistic values between 0 and 1. 
[bookmark: _Toc26775409]2.3.9.1 Convolution Layer
Convolution is the first layer to extract features from an input image. Convolution preserves the relationship between pixels by learning image features using small squares of input data. It is a mathematical operation that takes two inputs such as image matrix and a filterorkernel. Convolution of an image with different filters can perform operations such as edge detection, blur and sharpen by applying filters. 
[bookmark: _Toc26775410]2.3.9.2 Strides
Stride is the number of pixels shifts over the input matrix. When the stride is 1 then we move the filters to 1 pixel at a time. When the stride is 2 then we move the filters to 2 pixels at a time and so on. 
[bookmark: _Toc26775411]2.3.9.3 Padding
Sometimes filter does not fit perfectly fit the input image. We have two options:
· Pad the picture with zeros (zero-padding) so that it fits
· Drop the part of the image where the filter did not fit. This is called valid padding which keeps only valid part of the image.
[bookmark: _Toc26775412]2.3.9.4 Non-Linearity (ReLU)
ReLU stands for Rectified Linear Unit for a non-linear operation. The output is 
ƒ(x) = max (0, x).
Why ReLU is important: ReLU’s purpose is to introduce non-linearity in our ConvNet. Since the real-world data would want our ConvNet to learn would be non-negative linear values. There are other non-linear functions such as tanh or sigmoid can also be used instead of ReLU. Most of the data scientists use ReLU since performance-wise ReLU is better than the other two.
[bookmark: _Toc26775413]2.3.9.5 Pooling Layer
Pooling layers section would reduce the number of parameters when the images are too large. Spatial pooling also called subsampling or down sampling which reduces the dimensionality of each map but retains the important information. Spatial Pooling can be of different types:
1. Max Pooling
2. Average Pooling
3. Sum Pooling
Max pooling takes the largest element from the rectified feature map. Taking the largest element could also take the average pooling. Sum of all elements in the feature map call as sum pooling.

[bookmark: _Toc26775414][bookmark: _Toc26943625]2.3.10 Fully Connected Layer
The layer known as FC layer, we flattened our matrix into a vector and feed it into a fully connected layer like a neural network.[image: ]
[bookmark: _Toc26943655]Figure 2‑8: Example of Fully Connected Layer
In the above diagram, the feature map matrix will be converted as a vector (x1, x2, x3, …). With the fully connected layers, we combined these features together to create a model. Finally, we have an activation function such as Soft-max or sigmoid to classify the outputs as a cat, dog, car, truck etc.,
[image: ]
[bookmark: _Toc26943656]Figure 2‑9: Example of Convolutional Neural Network Architecture


[bookmark: _Toc26775415][bookmark: _Toc26943626]2.4 Review of Previous Works
(Karen & Andrew, 2015)evaluated very deep convolutional networks (up to 19 weights layers) for large-scale image classification. It was demonstrated that the representation depth is beneficial for the classification accuracy and that state-of-the-art performance on the ImageNet challenge dataset can be achieved using a convolutional ConvNet architecture (LeCun et al., 1989; Krizhevaky et al., 2012) with substantially increased depth.
(Georgios, et al., 2019)’s paper shows how class blind pruning and quantization can reduce the size of the model. The main idea was to find the parameters over the whole model that has minimal impact and set them to zero, thus reducing the computational cost. They presented a model compression method to reduce the inference time and memory footprint of advanced deep neural networks, they also showed the application of our method on different image classification and object detection models. The investigations presented in this study was unable to obtain concrete inference time measurements due to the lack of capabilities of software tools.
(Anh, et al., 2016)’s paper addresses the problem of learning visual features for affordable detection in RGB-D images. The goal was to detect affordances for object parts using a deep convolutional neural network. It was demonstrated that a large deep network can significantly improve the detection results compared to the state-of-the-art methods. Using this method, the inference procedure is real-time and the robot is able to perform grasping tasks using the detected affordance.
(Shaoquin, et al., 2015)presented Region Proposal Networks (RPN’s) for efficient and accurate region proposal generation. By sharing convolutional features with the down-stream detection network, the region proposal step is nearly cost-free. Their method enables a unified, deep-learning-based object detection system to run at 5-17fps. The learned RPN also improves region proposal quality and thus the overall object detection accuracy (Shaoquin, et al., 2015)
(Kedar , et al., 2018) work employs Convolutional Neural Network for recognition of pre-trained objects on the ImageNet dataset. A camera, aligned with the systems pre-determined orientation, serves as input to a computer system, which has the object recognition Neural Network deployed to carry out real-time object detection. The implementation of the model demonstrates that such a system can be used to identify objects and help the visually impaired. The results show that the recognition achieved by the system is fairly accurate, however it fails to identify smaller. The computation time required for detection is quite low while having a decent accuracy on a portable device, which shows that the system can be used to interpret objects in the environment in real-time. 
A deep learning diagram that learns four components – feature extraction, deformation handling, context modelling and classification – for generic object detection was proposed. Through interaction among these interdependent components, the unified deep model improves detection performance on the largest object detection dataset (Wanli, et al., 2014)
In this work, we leverage the expressivity of DNNs for object detector. They showed that the simple formulation of detection as DNN-base object mask regression can yield strong results when applied using a multi-scale coarse-to-fine procedure. These results came at some computational cost at training time-one needs to train a network per object type and mask type (Christian, et al., 2014)
(Reagan, et al., 2018)'s work tested the object detection capabilities of the two-state of the art models in CNN, it shows that the Single Shot Multi-Box Detector (SSD) with MobileNetV1 has high-speed detection but low accuracy compared with Faster-RCNN with InceptionV2 that has low speed but more accuracy. Based on the results of both experiments, there’s a trade-off between accuracy and speed. 
The work of (Hao , et al., 2018)proposed a low-shot transfer detector (LSTD) where they leveraged on a rich source-domain detector with very few training examples, this model integrates the advantages of both SSD and Faster RCNN in a unified deep framework. The LSTD was tested on a number of challenging low-shot detection experiments, where the LSTD outperforms other state-of-the-art approaches. The result demonstrates that LSTD is a preferable deep detector for low-shot scenarios.
(Alex, et al., 2012) trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way SoftMax. To reduce overfitting in the fully-connected layers they employed a recently-developed regularization method called “dropout” that proved to be very effective.
We have proposed a unified deep convolutional neural network, denoted the multi-scale CNN (MS-CNN), for fast multi-scale object detection. The detection is performed at various intermediate network layers; whose receptive fields match various object scales. This enables the detection of all object scales by feed forwarding a single input image through the network, which results in a very fast detector. CNN feature approximation was explored, as an alternative to input upsampling. It was shown to result in significant savings in memory and computation. Overall, the MS-CNN detector achieves high detection rates at speeds of up to 15 fps. (Zhaowei, et al., 2016)
(Kaiming, et al., 2015)’s paper on deep residual learning for image recognition provided comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset, they evaluated residual nets with a depth of up to152 layers—8× deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. The depth of representations is of central importance for many visual recognition tasks. Solely due to the extremely deep representations, a 28% relative improvement on the COCO object detection dataset was obtained.
With the improvements in the object detection networks, several; variations of object detection networks have been achieved impressive performance. However, the performance valuation of most models has focused on detection accuracy, and the performance verification is mostly based on high-end GPU hardware’s. In this paper, we propose real-time object detectors that guarantee balanced performance for real-time system on embedded platforms. The proposed model utilizes the basic head structure of the RefineDet model, which is a variant of the single-shot object detector (SSD). In order to ensure real-time performance, CNN models with relatively shallow layers or fewer parameters have been used as the backbone structure. IN addition to the basic VGGNet and ResNet structures, various backbone structures such as MobileNet, Xception, ResNeXt, Inception-SENet, and SE-ResNeXt have been used for this purpose. Successful training of object detection networks was achieved through an appropriate combination of intermediate layers. The accuracy of the proposed detector was estimated by evaluation of MS_COCO 2017 object detection dataset and the inference speed on the NVIDIA DRIVE PX@ and Jetson Xavier’s boards were tested to verify real-time performance in the embedded systems. The experiments show that the proposed models ensure balanced performance in terms of accuracy and inference speed in the embedded system environments. In addition, unlike the high-end GPUs, the use of embedded GPUs involves several additional concerns for efficient inference, which have been identified in this work. (Min-Kook, et al., 2019).
(Jifeng, et al., 2016)’s paper presented an object detection via a region-based fully convolutional network for accurate and efficient object detection. In contrast to previous region-based detectors such as Fast/Faster R-CNN that apply a costly per-region sub-network hundreds of times, the region-based detector is fully convolutional with almost all computation shared on the entire image. To achieve this goal, Jifeng, Yi, Kaiming, & Jian proposed position-sensitive score maps to address a dilemma between translation-invariance in object detection. This method can naturally adopt fully convolutional image classifier backbones, such as the latest Residual Networks (ResNets), for object detection. This method achieves accuracy competitive with the Faster R-CNN counterpart but is much faster during both training and inference.
Recently, deep ConvNets have significantly improved image classification and object detection accuracy. Compared to image classification, object detection is a more challenging task that requires more complex methods to solve. In this paper, we streamline the training process for state-of-the-art ConvNet-based object detectors. We propose a single-stage training algorithm that jointly learns to classify object proposals and refine their spatial locations. The resulting method can train a very deep detection network (VGG16) 9× faster than R-CNN and 3× faster than SPPnet. At runtime, the detection network processes images in 0.3s (excluding object proposal time) while achieving top accuracy on PASCAL VOC 2012 with amAP of 66% (vs. 62% for R-CNN). (Ross, 2015).
(Emily, et al., 2014) Presented techniques that can speed up the bottleneck convolution operations in the first layers of a CNN by a factor 2-3x, with negligible loss of performance. They also showed that their methods reduce the memory footprint of weighs in the first two layers by a factor of 2-3x and the fully connected layers by a factor 5-13x.  Since the vast majority of weights reside in the fully connected layers, compressing only these layers translate into significant savings, which would facilitate mobile deployment of convolutional networks. These techniques are orthogonal to other approaches for efficient evaluation, such as quantization or working in the Fourier domain. Hence, they can potentially be used together to obtain further gains.
Training a large convolutional network to produce state-of-the-art results can take weeks, even when using modern GPUs. Producing labels using a trained network can also be costly when dealing with web-scale datasets. In this work, we present a simple algorithm which accelerates training and inference by a significant factor and can yield improvements of over an order of magnitude compared to existing state-of-the-art implementations. This is done by computing convolutions as pointwise products in the Fourier domain while reusing the same transformed feature map many times. The algorithm is implemented on a GPU architecture and addresses a number of related challenges. They presented a simple and fast algorithm for training and inference using convolutional networks. It outperforms known state-of-the-art implementations in terms of speed, as verified by numerical experiments. (Michael, et al., 2013)
An integrated framework for using Convolutional Networks for classification, localization and detection. We show how a multiscale and sliding window approach can be efficiently implemented within a ConvNet. Recognizing the category of the dominant object in an image is a task to which Convolutional Networks (ConvNets) have been applied for many years, whether the objects were handwritten characters, house numbers, and texture less toys, traffic signs, objects from the Caltech-101 dataset, or objects from the 1000-category ImageNet dataset. The accuracy of ConvNets on small datasets such as Caltech-101, while decent, has not been record-breaking. However, the advent of larger datasets has enabled ConvNets to significantly advance the state of the art on datasets such as the 1000-category ImageNet. The main point of this paper is to show that training a convolutional network to simultaneously classify, locate and detect objects in images can boost the classification accuracy and the detection and localization accuracy of all tasks.  The paper proposes a new integrated approach to object detection, recognition, and localization with a single ConvNet. (Pierre, et al., 2014)
(Joseph, et al., 2016)’s paper on YOLO, a new approach to object detection shows Prior work on object detection repurposes classifiers to perform detection. A single neural network predicts bounding boxes and class probabilities directly from full images in one evaluation. Since the whole detection pipeline is a single network, it can be optimized end-to-end directly on detection performance. In this paper, YOLO using ImageNet Dataset was used and since the model learns to predict bounding boxes from data, it struggles to generalize objects in new or unusual aspect rations or configurations. Fast YOLO is the fastest general-purpose object detection in the literature and YOLO pushes the state of the art in real-time object detection, yet pipelines in Image processing are slow and hard to optimize because each individual component must be trained separately.
(Constantine & Tomaso , 2000) Presents a general, trainable system for object detection in unconstrained, cluttered scenes, results on faces, people, and car detection tasks using the same architecture. In addition, they quantified how the representation affects detection performance by considering several alternate representations including pixels and principal components. They also describe a real-time application of our person detection system as part of a driver assistance system. The system uses a representation based on an overcomplete dictionary of Haar wavelets that captures the significant information about elements of the object class. When combined with a powerful classification engine, the support vector machine, they obtain a detection system that achieves our goals of high accuracy with low rates of false positives.
(Reagan, et al., 2018) proposed a new model architecture called MobileNet based on depth wise separable convolutions. MobileNet is based on a streamlined architecture that uses depth-wise separable convolutions to build lightweight deep neural networks. They investigated some of the important design decisions leading to an efficient model, then they demonstrated how to build smaller and faster MobileNet using width multiplier and resolution multiplier by trading off a reasonable amount of accuracy to reduce size and latency. 
Despite the appeal of deep neural networks that largely replace the traditional handmade filters, they still suffer from isolated cases that cannot be properly handled only by the training of convolutional filters. Abnormal factors, including real-world noise, blur, or other quality degradations, ruin the output of a neural network. These unexpected problems can produce critical complications, and it is surprising that there has only been minimal research into the effects of noise in the deep neural network model. Therefore, we present an exhaustive investigation into the effect of noise in image classification and suggest a generalized architecture of a dual-channel model to treat quality degraded input images. We compare the proposed dual-channel model with a simple single model and show it improves the overall performance of neural networks on various types of quality degraded input datasets (Jonghwa & Kyung-Ah , 2017). In a real-world classification task, a deep neural network often indicates reduced accuracy. They proposed an input image denoising method and dual-channel architecture to achieve a stable performance of images classification in a real-world task.
(Yiren, et al., 2017) systematically studied the effect of image distortion on the deep neural network (DNN) image classifiers after observing that image blur and image noise were common distortions during image acquisition. They first examined the DNN classifiers performance under four types of distortion. Secondly (Yiren, et al., 2017) proposed two approaches to alleviate the effect of image distortion which are re-training and fine-tuning with noisy images. It was observed that from their results, fine-tuning and re-training models using noisy data can increase the model performance on distorted data, and re-training methods usually achieve comparable or better accuracy than fine-tuning.
Recent results indicate that the generic descriptors extracted from the convolutional neural networks are very powerful. This paper adds to the mounting evidence that this is indeed the case. We report on a series of experiments conducted for different recognition tasks using the publicly available code and model of the overfit network which was trained to perform object classification on ILSVRC13. We use features extracted from the overfit network as a generic image representation to tackle the diverse range of recognition tasks of object image classification, scene recognition, fine-grained recognition, attribute detection and image retrieval applied to a diverse set of datasets. We selected these tasks and datasets as they gradually move further away from the original task and data the overfit network was trained to solve. Astonishingly, we report consistent superior results compared to the highly tuned state-of-the-art systems in all the visual classification tasks on various datasets. For instance, retrieval it consistently outperforms low memory footprint methods except for sculptures dataset. The results are achieved using a linear SVM classifier (or L2 distance in case of retrieval) applied to a feature representation of size 4096 extracted from a layer in the net. The representations are further modified using simple augmentation techniques e.g. jittering. The results strongly suggest that features obtained from deep learning with convolutional nets should be the primary candidate in most visual recognition tasks. (Ali, et al., 2014)
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[bookmark: _Toc26775417][bookmark: _Toc26943628]3.1	Introduction
This project work presents the building process of a model to identify and classify object images from different objects. This chapter reports the design phase of the model, it involves decomposing the whole system into smaller parts and defining the relationship among the constituent parts.
Top down design approach was employed in design and development phases of this project work. This involved dividing the system into subsystems or modules and each subsystem being further divided into even smaller subs. This process of division is repeated until each module is sufficiently small enough to be conveniently coded (implemented) from scratch as an independent entity that performs a clearly defined operation
[bookmark: _Toc26775418][bookmark: _Toc26943629]3.2 The Design phase
	At the beginning of the project, the tools to be used for this project were downloaded, the tools used for the project were the Kaggle Dataset API, Google Chrome, A Kaggle JSON file. 


[bookmark: _Toc26775419][bookmark: _Toc26943630]3.2.1 Model Design
	The model is a very important part in developing a convolutional network to identify and classify objects in images. The primary model used in this project is Faster R-CNN + Inception V2, while the other model used for the purpose of comparing results. Before any further work was done, there was a need for virtual space on Google Colab which was used for storing the images before and after the images from Kaggle have been unzipped Figure 3.1
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[bookmark: _Toc26943658]Figure 3‑1: Code to mount google drive on Google Colab

The dataset used in this dataset contained 99,999 images of different scenes, scenarios and objects for the model to predict and identify, the large size of the dataset didn’t allow for it to be downloaded, instead the API was used to connect the dataset to Google Colab.
Different libraries and functions were developed to correctly identify the objects using bounding boxes drawn across each image successfully identified.
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[bookmark: _Toc26943659]Figure 3‑2: API to connect Kaggle to Google Colab

Then, the libraries to be used for the model were imported into Google Colab as shown in figure and figure. A cell of code to also confirm if Google Colab was running on GPU or CPU was also put in place as shown in figure
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[bookmark: _Toc26943660]Figure 3‑3: Importing Libraries
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[bookmark: _Toc26943661]Figure 3‑4: Other libraries Used
[bookmark: _Toc26775420][bookmark: _Toc26943631]3.2.2: Libraries used
[bookmark: _Toc26775421]3.2.2.1 Matplot Library
	Matplotlib is a Python 2D plotting library which produces publication quality figures in a variety of hardcopy formats and interactive environments across platforms. Matplotlib can be used in Python scripts, the Python and IPython shells, the Jupyter notebook, web application servers, and four graphical user interface toolkits.
Matplotlib tries to make easy things easy and hard things possible. You can generate plots, histograms, power spectra, bar charts, error charts, scatterplots, etc., with just a few lines of code. For examples, see the sample plots and thumbnail gallery.
For simple plotting the pyplot module provides a MATLAB-like interface, particularly when combined with IPython. For the power user, you have full control of line styles, font properties, axes properties, etc., via an object-oriented interface or via a set of functions familiar to MATLAB users.
[bookmark: _Toc26775422]3.2.2.2 TensorFlow
	TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries and community resources that lets researchers push the state-of-the-art in ML and developers easily build and deploy ML powered applications.
	TensorFlow offers multiple levels of abstraction so one can choose the right one for according to one’s needs. Build and train models by using the high-level Keras API, which makes getting started with TensorFlow and machine learning easy.
[bookmark: _Toc26775423]3.2.2.3 Torch
	Torch is an open-source machine learning library, a scientific computing framework, and a script language based on the Lua programming language. It provides a wide range of algorithms for deep learning, and uses the scripting language LuaJIT, and an underlying C implementation. As of 2018, Torch is no longer in active development. However, PyTorch is actively developed as of August 2019.
[bookmark: _Toc26775424]3.2.2.4 NumPy
NumPy is the fundamental package for scientific computing with Python. It contains among other things:
· a powerful N-dimensional array object
· sophisticated (broadcasting) functions
· tools for integrating C/C++ and Fortran code
· useful linear algebra, Fourier transform, and random number capabilities
Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.
[bookmark: _Toc26775425]3.2.2.5 Pandas
Pandas is an open source, BSD-licensed library providing high-performance, easy-to-use data structures and data analysis tools for the Python programming language.
[bookmark: _Toc26775426]3.2.3Data Flow Diagram (DFD) for the model
A data flow diagram (DFD) uses a very limited number of primitive symbols to represent the performed by a system and the data flow among the functions. Starting with a set of high-level functions that a system performs, a DFD model hierarchy represents various sub-functions. As shown in figure 3-5 below
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[bookmark: _Toc26943662]Figure 3‑5: Flowchart through the CNN discriminant algorithm for identification of objects from images


[bookmark: _Toc26943632]3.3 Functions Used
In this section, we tend to outline a couple of functions which will be used for process pictures and data format the output prediction
· format_prediction_string (image_id, result): image_id is the ID of the test image to be label. Result is the dictionary created from running a tf.Session. The output is a formatted output row (i.e. {Label Confidence XMinYMinXMaxYMax}, {...}), so we need to modify the order from TensorFlow, which is by default YMinXMinYMaxXMax.
· Draw boxes (image, boxes, class_names, scores, max_boxes=10, min_score=0.1): image is a numpy array representing an image, boxes, class_names, and scores are directly retrieved from the model predictions.
· display_image (image): Display a numpy array representing an image.
.
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[bookmark: _Toc26943663]Figure 3‑6: Function to format output of prediction string
[image: ]
[bookmark: _Toc26943664]Figure 3‑7: Function to size the output image
[image: ]
[bookmark: _Toc26943665]Figure 3‑8: Function to draw bounding boxes on the image
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[bookmark: _Toc26943666]Figure 3‑9: Function to draw bounding boxes on objects in the images



[bookmark: _Toc26775427][bookmark: _Toc26776393][bookmark: _Toc26776734][bookmark: _Toc26943633]Results
[bookmark: _Toc26775429][bookmark: _Toc26943634]4.1 Implementing the Models
For this project, Faster R-CNN using Inception V2 as backbone was used, and it was
For the implementation, it is vital to notice those following points:
· The model doesn't support fine-tuning.
· The model doesn't support batching; therefore, the inputs needto be ONE image of form (1, height, width, 3).
· The modules were run on GPU to induce acceptable abstract thought times.
· The models are loaded directly from TensorFlowHub; thus, this code won't work offline.
· The number of bounding boxes present on the output is solely dependent on the value assigned to the model to present, for this project, the maximum number of bounding boxes set for the model to predict is 10
Figure 4-1 to 4-4 show the results of identification and classification of images using Faster R-CNN with Inception V2 model.[image: ]
Figure 4‑1: First Result

[image: ]
Figure 4‑2: Second Result
[image: ]
Figure 4‑3: Third Result
[image: ]
Figure 4‑4: Fourth Result

[bookmark: _Toc26943635]4.2 Comparison of models
After successfully running different images through the Faster R-CNN model, another object detection model was implemented to compare the level of accuracy. two different object detection models were compared with different images showing different scenarios. For the first images SSD with MobileNet v1 as backbone while the second images were classified using Faster R-CNN using Inception v2 as its backbone, the following images shows the images and their level of accuracy.
[image: ]
[bookmark: _Toc26943667]Figure 4‑5: Scenario One using SSD+MobileNet V1
[image: ]
[bookmark: _Toc26943668]Figure 4‑6: Scenario One using Faster R-CNN + Inception V2
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[bookmark: _Toc26943669]Figure 4‑7: Scenario Two using SSD+MobileNet V1
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[bookmark: _Toc26943670]Figure 4‑8: Scenario Two using Faster R-CNN + Inception V2
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[bookmark: _Toc26943671]Figure 4‑9: Scenario Two using SSD+MobileNet V1

[image: ]
[bookmark: _Toc26943672]Figure 4‑10: Scenario Three using Faster R-CNN + Inception V2
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#mount google drive to host the dataset from kaggle
#This code is to authorise google colab to link with google drive
from google.colab import drive
drive.mount('/content/drive’)
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#Download the required dataset(competetion files) to google drive
Ikaggle competitions download -c open-images-2019-object-detection
#unzip the dataset

lunzip sample_submission.csv.zip

lunzip test.zip

print(“Done unzipping")

Warning: Looks like you're using an outdated API Version, please consider updating
Downloading sample_submission.csv.zip to /content

0% 0.00/1.07M [00:00<?, ?B/s]
100% 1.07M/1.07M [00:00<00:00, 73.0MB/s]
Downloading test.zip to /content
100% 9.69G/9.69G [01:45<00:00, 118MB/s]
100% 9.69G/9.696 [01:45<00:00, 99.6MB/s]
Archive: sample submission.csv.zip

inflating: sample submission.csv
Archive: test.zip

inflating: b797946840abf33c.jpg
9f54a712f004e57f.j
abg9se5364d5a433.pg
€98dbd20bg98FbSb. jpg
<7b80b9bb2085d78. jpg
abg383ac336681de. jpg
27211edc011d0224.pg
afedo118d4alc165.jpg
90e2b58c872a87b5. jpg
: b28f88501fbsfbbe.jpg
18b010d50ba92235. jpg
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#Import necessary libraries
import os

import time

from pprint import pprint
from six import BytesIo

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

import tensorflow as tf

import tensorflow hub as hub

from PIL import Image, ImageColor, ImageDraw, ImageFont, ImageOps
from tqdm import tqdm
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# Import PyTorch if using Google Colab
# http://pytorch.org/

from os.path import exists

from wheel.pepa25tags import get abbr_impl, get impl ver, get abi_tag

platform = '{}{}-{}".format(get_abbr_impl(), get impl ver(), get abi_tag())

cuda_output - I1dconfig -plgrep cudart.so[sed -e 's/.*\.\([0-91%\)\.\([0-9]*\)$/cu\1\2/"
accelerator = cuda_output[e] if exists(’/dev/nvidiae') else 'cpu’

import torch

import PIL

print(PIL.PILLOW_VERSION)
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def format_prediction_string(image id, result):
prediction_strings = []

for 1 in range(len(result['detection_scores'])):
class_name = result['detection_class_names'][i].decode("utf-g")

YMin,XMin,YMax,XMax = result[’detection boxes'][i]
score = result['detection_scores'][i]

prediction_strings.append(
£"{class_name} {score} {XMin} {YMin} {XMax} {YMax}"
)

prediction_string =

.join(prediction_strings)

return {
“ImageId": image_id,
“Predictionstring": prediction_string
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def display_image(image):
fig = plt.figure(figsize=(20, 15))
plt.grid(False)
plt.axis('off')
plt. imshow(image)
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def draw_bounding_box_on_image(image,
ymin,
Xmin,
ymax,
Xmax,
color,
font,
thickness=4,
display_str_list=()):
Adds a bounding box to an image."""
draw = ImageDraw.Draw(image)
im width, im_height = image.size
(left, right, top, bottom) = (xmin * im width, xmax * im width,
ymin * im_height, ymax * im_height)
draw.line([(left, top), (left, bottom), (right, bottom), (right, top),
(left, top)],
width=thickness,
fill=color)

# If the total height of the display strings added to the top of the bounding
# box exceeds the top of the image, stack the strings below the bounding box
# instead of above.

display_str_heights = [font.getsize(ds)[1] for ds in display_str_list]

# Each display_str has a top and bottom margin of @.05x.
total_display_str_height = (1 + 2 * 0.05) * sum(display_str_heights)

if top > total display_str_height:
text_bottom = top
else:
text_bottom = bottom + total_display_str_height
# Reverse List and print fron botton to Top.
for display_str in display_str_list[::
text_width, text_height = Font.getsize(display_str)
margin = np.ceil(0.05 * text_height)
draw.rectangle([ (left, text_bottom - text_height - 2 * margin),
(left + text_width, text_bottom)],
fill=color)
draw. text((left + margin, text_bottom - text_height - margin),
display_str,
fill="black",
font=font)
text_bottom -= text height - 2 * margin
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#Function to draw bounding boxes around the objects in the image

def draw_boxes(image, boxes, class_names, scores, max_boxes=10, min_score=0.1)
“"“Overlay labeled boxes on an image with formatted scores and label names."
colors = list(ImageColor.colormap.values())

try:
font = ImageFont.truetype(
" Jusr/share/fonts/truetype/liberation/Liberationsansharron-Regular. ttf",
25)
except IOError:
print("Font not found, using default font.")
font = ImageFont.load_default()

for i in range(min(boxes.shape[@], max_boxes)):
if scores[i] >= min_score:
ymin, xmin, ymax, xmax = tuple(boxes[i].tolist())
display_str = "{}: {}%".format(class_names[i].decode("ascii"),
int(100 * scores[i]))
color = colors[hash(class_names[i]) % len(colors)]
image_pil = Image.fromarray(np.uints(image)).convert("RGe")
draw_bounding_box_on_image(
Tnage_pil,
ymin,
xmin,
ymax,
xmax,
color,
font,
display_str_list=[display_str])
np.copyto(image, np.array(image_pil))
return image
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