
CSC 101/CSC 111 – INTRODUCTION TO COMPUTER SCIENCE (3 UNITS) LECTURE 3

BALOGUN JEREMIAH ADEMOLA

ASSISTANT LECTURER,

DEPARTMENT OF COMPUTER SCIENCE AND MATHEMATICS

MOUNTAIN TOP UNIVERSITY, OGUN STATE, NIGERIA

COURSE OUTLINE

- Definition of Computer
- History and Overview of Computing and Computers
- Evolution of Ideas and Machines from Mechanical Computer to Multimedia Computer
- Introduction to computing system
 - Basic elements of a computer system hardware
 - Block diagram, data/instruction flow, control flow
- Software types, packages and applications
- Characteristics of computer
- Problem solving using flowcharts and algorithms
- Data representation in computer system
- Communications and networks
 - World wide web, network access, network architectures, data communications. Safety and security
- File management in Windows and basic word processors, spreadsheets, presentation, graphics and other applications
- Introduction to programming:
 - Statements, symbolic names, arrays, expressions and control statements

COMPUTER CLASSIFICATION

■ ANALOGUE COMPUTERS

- These computers manipulate continuous data types and thus works on the principle of measurements.
- Modern analog computers usually employ electrical parameters, such as voltages, resistances or currents, to represent the quantities being manipulated.
- Such computers do not deal directly with the numbers thus they measure continuous physical magnitudes.

■ DIGITAL COMPUTERS

- These computers manipulate discrete data types and thus works on the principle of counting.
- They perform calculations and logical operations with quantities represented as digits.
- Such computers process data into a digital value (in 0s and 1s).
- They give the results with more accuracy and at a faster rate.

■ HYBRID COMPUTERS

- A combination of computers those are capable of inputting and outputting in both digital and analog signals.
- They incorporate the measuring feature of an analog computer and counting feature of a digital computer.
- For computational purposes, these computers use analog components and for storage, digital memories are used.

CHARACTERISTICS OF A COMPUTER

The characteristics of computers that have made them so powerful and universally useful are speed, accuracy, diligence, versatility and storage capacity

▪ **SPEED**

- Computers work at an incredible speed.
- A powerful computer is capable of performing about 3-4 million simple instructions per second.

▪ **ACCURACY**

- Errors that may occur can almost always be attributed to human error (inaccurate data, poorly designed system or faulty instructions/programs written by the programmer)

▪ **DILIGENCE**

- Unlike human beings, computers are highly consistent.
- They do not suffer from human traits of boredom and tiredness resulting in lack of concentration.
- Computers, therefore, are better than human beings in performing voluminous and repetitive jobs.

▪ **VERSATILITY**

- Computers are versatile machines and are capable of performing any task as long as it can be broken down into a series of logical steps.
- The presence of computers can be seen in almost every sphere – Railway/Air reservation, Banks, Hotels, Weather forecasting and many more.

▪ **STORAGE CAPACITY**

- Today's computers can store large volumes of data.
- A piece of information once recorded (or stored) in the computer, can never be forgotten and can be retrieved almost instantaneously.

FUNCTIONS OF A COMPUTER

▪ **Input**

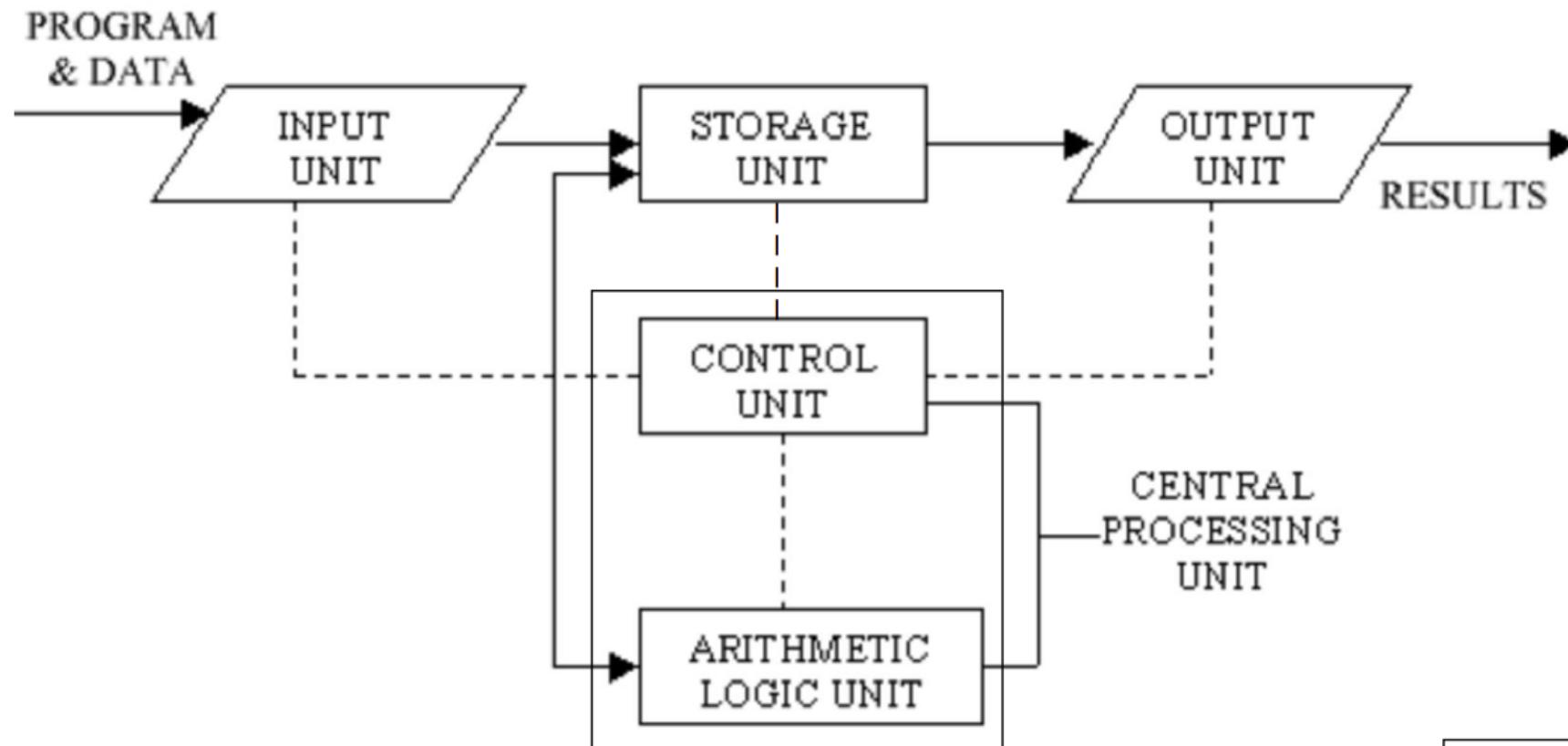
- The computer accepts data from outside for processing as Input, which is the raw information entered into a computer from the input devices.
- Transferring of information into the system can be done through a user input device - i.e. keyboard, mouse, scanner etc.. or through previously loaded software/program, cd etc.

▪ **Processing**

- The computer performs operations on the data that it holds internally.
- Processing is the operation of data as per given instruction which is an internal process of the computer.
- This is where the computer actually does the 'work' of data manipulation and control.

▪ **Output**

- The computer produces information for external use.
- Output is the processed data given by computer after data processing which is also called a Result.
- Output is the exact opposite of input.
- Output is the function that allows a computer to display information, from the system, to the user.
- This can be accomplished using the monitor (or other graphical display), printer, speakers etc.


▪ **Storage**

- The computer stores data before, during and after processing.
- One can save results of processing in the storage devices for the future use.
- Most computers are able to store data both temporarily (short-term) and permanently (long-term)
- Storage takes place on hard-drives or external storage devices.

▪ **Communication**

- The computer can send or receive data to or from other computers when it is connected on a network

BASIC COMPUTER ORGANIZATION

Dotted lines (----) indicate flow of instruction
solid lines (—) indicate flow of data

FUNCTIONAL UNITS OF A COMPUTER

■ INPUT UNIT

- It accepts (or reads) the list of instructions and data from the outside world.
- It converts these instructions and data in computer acceptable format.
- It supplies the converted instructions and data to the computer system for further processing.

■ OUTPUT UNIT

- It accepts the results produced by the computer which are in coded form and hence cannot be easily understood by us.
- It converts these coded results to human acceptable (readable) form.
- It supplied the converted results to the outside world.

■ STORAGE UNIT

- All the data to be processed and the instruction required for processing (received from input devices).
- Intermediate results of processing.
- Final results of processing before these results are released to an output device.

FUNCTIONAL UNITS OF A COMPUTER...

▪ **CENTRAL PROCESSING UNIT (CPU)**

- The CPU processes instructions it receives in the process of decoding data.
- In processing this data, the CPU performs four basic steps:
- **Fetch**
 - Each instruction is stored in memory and has its own address.
 - The processor takes this address number from the program counter, which is responsible for tracking which instructions the CPU should execute next.

▪ **Decode**

- All programs to be executed are translated to into Assembly instructions.
- Assembly code must be decoded into binary instructions, which are understandable to CPU.

▪ **Execute**

- While executing instructions the CPU can do one of three things:
 - Do calculations with its ALU,
 - move data from one memory location to another, or
 - jump to a different address.

▪ **Store**

- The CPU must give feedback after executing an instruction and the output data is written to the memory.

FUNCTIONAL UNITS OF A COMPUTER...

▪ ARITHMETIC AND LOGICAL UNIT (ALU)

- An arithmetic logic unit (ALU) is a major component of the central processing unit of a computer system.
- It does all processes related to arithmetic and logic operations that need to be done on instruction words.
- In some microprocessor architectures, the ALU is divided into the arithmetic unit (AU) and the logic unit (LU).
- ALUs routinely perform the following operations:
 - **Logical Operations**
 - These include AND, OR, NOT, XOR, NOR, NAND, etc.
 - **Bit-Shifting Operations**
 - This pertains to shifting the positions of the bits by a certain number of places to the right or left, which is considered a multiplication operation.
 - **Arithmetic Operations**
 - This refers to bit addition and subtraction.
 - Although multiplication and division are sometimes used, these operations are more expensive to make.
 - Addition can be used to substitute for multiplication and subtraction for division.

FUNCTIONAL UNITS OF A COMPUTER...

▪ **CONTROL UNIT (CU)**

- A control unit (CU) handles all processor control signals.
- It directs all input and output flow, fetches code for instructions from microprograms and directs other units and models by providing control and timing signals.
- A CU component is considered the processor brain because it issues orders to just about everything and ensures correct instruction execution.
- CU functions include the following:
 - Controls sequential instruction execution
 - Interprets instructions
 - Guides data flow through different computer areas
 - Regulates and controls processor timing
 - Sends and receives control signals from other computer devices
 - Handles multiple tasks, such as fetching, decoding, execution handling and storing results

COMPUTER MEMORY

▪ PRIMARY MEMORY

▪ Random Access Memory (RAM)

- It is the place in a computer where the operating system, application programs and the data in current use are kept temporarily so that they can be accessed by the computer's processor.
- It is said to be 'volatile' since its contents are accessible only as long as the computer is on.
- The contents of RAM are no more available once the computer is turned off

▪ Read Only Memory (ROM)

- This is a special type of memory which can only be read and contents of which are not lost even when the computer is switched off.
- It typically contains manufacturer's instructions.
- Among other things, ROM also stores an initial program called the 'bootstrap loader'.
 - The function is to start the operation of computer system once the power is turned on.

COMPUTER MEMORY . . .

■ SECONDARY MEMORY

- Unlike the primary memory are less volatile and store data and programs permanently

■ Hard Disks

- Hard disks are made up of rigid material and are usually a stack of metal disks sealed in a box.
- The hard disk and the hard disk drive exist together as a unit and is a permanent part of the computer where data and programs are saved.
- These disks have storage capacities ranging from 1GB to 80 GB and more. Hard disks are rewritable.

■ Compact Disk (CD)

- Compact Disk (CD) is portable disk having data storage capacity between 650-700 MB.
- It can hold large amount of information such as music, full-motion videos, and text etc. CDs can be either read only or read write type.

■ Digital Video Disk (DVD)

- Digital Video Disk (DVD) is similar to a CD but has larger storage capacity and enormous clarity.
- Depending upon the disk type it can store several Gigabytes of data.
- DVDs are primarily used to store music or movies and can be played back on the television or the computer too.
- These are not rewritable.

PRIMARY AND SECONDARY MEMORY

S/N	PRIMARY MEMORY	SECONDARY MEMORY
1	<ul style="list-style-type: none"> Stores programs and data while computer is running for current use. 	<ul style="list-style-type: none"> Store programs and data for later use
2	<ul style="list-style-type: none"> Fast and limited in storage capacity 	<ul style="list-style-type: none"> Slow and large in storage capacity
3	<ul style="list-style-type: none"> Volatile 	<ul style="list-style-type: none"> Non-volatile
4	<ul style="list-style-type: none"> Memory devices used are semiconductor memories 	<ul style="list-style-type: none"> Memory devices are either magnetic or optical.
5	<ul style="list-style-type: none"> Also called main or internal memory 	<ul style="list-style-type: none"> Also called back-up or external memory
6	<ul style="list-style-type: none"> Primary memory devices are connected to the computer using slots 	<ul style="list-style-type: none"> Secondary memory devices are connected using cables
7	<ul style="list-style-type: none"> Communicate directly with the CPU. 	<ul style="list-style-type: none"> Do not communicate directly with the CPU.
8	<ul style="list-style-type: none"> They are more expensive. 	<ul style="list-style-type: none"> They are less expensive.

INPUT/OUTPUT (I/O) DEVICES

■ INPUT DEVICES

- An input device is any device that provides input to a computer.
- There are many input devices, but the two most common ones are a keyboard and mouse.

▪ Keyboard

- The keyboard is very much like a standard typewriter keyboard with a few additional keys.
- The basic QWERTY layout of characters is maintained to make it easy to use the system.
- The additional keys are included to perform certain special functions.
 - These are known as function keys that vary in number from keyboard to keyboard.

▪ Mouse

- It is a device that controls the movement of the cursor or pointer on a display screen.
- A mouse is a small object you can roll along a hard and flat surface.
- As you move the mouse, the pointer on the display screen moves in the same direction.

▪ Touch Screen

- It allows the user to operate/make selections by simply touching the display screen.
- A display screen that is sensitive to the touch of a finger or stylus.
- It is widely used on ATM machines, retail point-of-sale terminals, car navigation systems, medical monitors and industrial control panels.
- A number of laptop computers today support touch-screen functionalities.

INPUT/OUTPUT (I/O) DEVICES...

▪ INPUT DEVICES

▪ **Magnetic Ink Character Recognition (MICR)**

- MICR can identify character printed with a special ink that contains particles of magnetic material.
- This device particularly finds applications in banking industry.

▪ **Optical Mark Recognition (OMR)**

- Optical mark recognition, also called mark sense reader is a technology where an OMR device senses the presence or absence of a mark, such as pencil mark.
- OMR is widely used in tests such as aptitude test..

▪ **Bar Code (or QR Code) Reader**

- Bar-code readers are photoelectric scanners that read the bar codes or vertical zebra strips marks (or square blocks in the case of QR codes), printed on product containers.
- These devices are generally used in super markets, bookshops etc.

▪ **Scanner**

- Scanner is an input device that can read text or illustration printed on paper and translates the information into a form that the computer can use.
- A scanner works by digitizing an image.

INPUT/OUTPUT (I/O) DEVICES...

▪ OUTPUT DEVICES

- **Output device receives information from the CPU and presents it to the user in the desired form.**
- **The processed data, stored in the memory of the computer is sent to the output unit, which then converts it into a form that can be understood by the user.**
- **The output is usually produced in one of the two ways – on the display device, or on paper (hard copy).**

▪ **Monitor**

- Monitor is an output device that resembles the television screen.
- It may use a Cathode Ray Tube (CRT). Light Emitting Diodes (LED) or Liquid Crystal Display (LCD) to display information.
- The monitor is associated with a keyboard for manual input of characters and displays the information as it is keyed in. It also displays the program or application output.

▪ **Printer**

- Printers are used to produce paper (commonly known as hardcopy) output. Based on the technology used, they can be classified as Impact or Non-impact printers.
 - **Impact Printers** - use the typewriting printing mechanism wherein a hammer strikes the paper through a ribbon in order to produce output.
 - **Non-impact Printers** - do not touch the paper while printing. They use chemical, heat or electrical signals to etch the symbols on paper

COMPUTER SOFTWARE

- Computer software is the set of programs that makes the hardware perform a set of tasks in particular order.
- Hardware and software are complimentary to each other.
- Both have to work together to produce meaningful results.
- Computer software is classified into two broad categories; system software and application software.

▪ **System Software**

- System software consists of a group of programs that control the operations of a computer equipment including functions like managing memory, managing peripherals, loading, storing, and is an interface between the application programs and the computer.
- MS DOS (Microsoft's Disk Operating System), UNIX are examples of system software..

▪ **Application Software**

- Software that can perform a specific task for the user, such as word processing, accounting, budgeting or payroll, fall under the category of application software.
- Word processors, spreadsheets, database management systems are all examples of general purpose application software.

APPLICATION SOFTWARE

Word Processing Software

- The main purpose of this software is to produce documents.

Database Software

- Database is a collection of related data.
- The purpose of this software is to organize and manage data.
- The advantage of this software is that you can change the way data is stored and displayed.

Spreadsheet Software

- The spread sheet software is used to maintain budget, financial statements, grade sheets, and sales records.
- The purpose of this software is organizing numbers.
- It also allows the users to perform simple or complex calculations on the numbers entered in rows and columns.

Presentation Software

- This software is used to display the information in the form of slide show.
- The functions include editing that allows insertion and formatting of text, including graphics in the text and executing the slide shows.

Multimedia Software

- This software will allow the user to create audio and videos.

COMPUTER HARDWARE AND SOFTWARE

S/N	COMPUTER HARDWARE	COMPUTER SOFTWARE
1	<ul style="list-style-type: none"> Physical components of a computer system. Devices that are required to store and execute (or run) the software. 	<ul style="list-style-type: none"> Intangible components of a computer system, which are programs or instructions that enables a user to interact with the computer.
2	<ul style="list-style-type: none"> Input, Storage, Processing, Control and Output devices 	<ul style="list-style-type: none"> System software, Programming software, and Application software
3	<ul style="list-style-type: none"> CD-ROM, monitor, printer, video/sound card, scanner, routers, modems, switches, keyboards 	<ul style="list-style-type: none"> Word processor, Spreadsheet application, WhatsApp, Facebook, Instagram, PDF reader, e-book reader
4	<ul style="list-style-type: none"> Serves as the delivery system for software Infrequently changed 	<ul style="list-style-type: none"> Perform specific task needed Generally not needed for hardware to perform basic task
5	<ul style="list-style-type: none"> Starts functioning once software is loaded 	<ul style="list-style-type: none"> Software is installed in order to deliver its set of instructions
6	<ul style="list-style-type: none"> Hardware failure is random. Failure rate increases with use. 	<ul style="list-style-type: none"> Software failure is systematic Failure rate does not increase over time.
7	<ul style="list-style-type: none"> Wears out over time 	<ul style="list-style-type: none"> Does not wear out over time. However, bugs are discovered over time.
8	<ul style="list-style-type: none"> Physical (tangible) in nature 	<ul style="list-style-type: none"> Logical (intangible) in nature

COMPUTER SOFTWARE LANGUAGES

- Computer language or programming language is a coded syntax used by computer programmers to communicate with a computer.
- Computer language establishes a flow of communication between software programs.
- The language enables a computer user to dictate what commands the computer must perform to process data.
- These languages can be classified into following categories:
 - Machine Language
 - Assembly Language
 - High Level Language

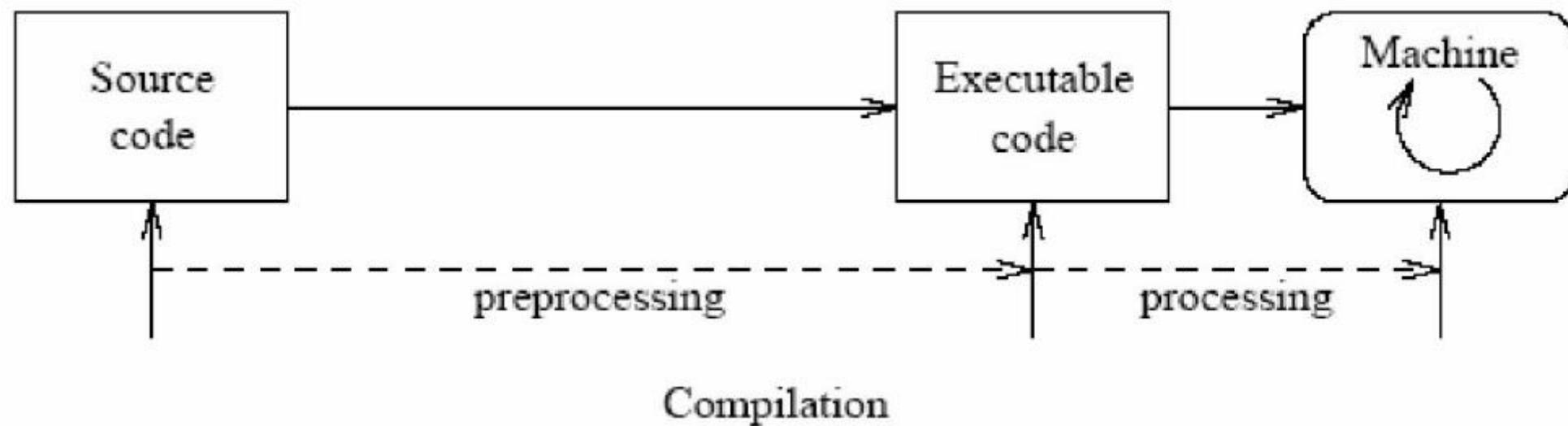
COMPUTER SOFTWARE LANGUAGES...

▪ Machine Language

- Machine language or machine code is the native language directly understood by the computer's central processing unit or CPU.
- This type of computer language is not easy to understand, as it only uses a binary system, an element of notations containing only a series of numbers consisting of one and zero, to produce commands.

▪ Assembly language

- Assembly Level Language is a set of codes that can run directly on the computer's processor.
- This type of language is most appropriate in writing operating systems and maintaining desktop applications.
- With the assembly level language, it is easier for a programmer to define commands.
- It is easier to understand and use as compared to machine language.

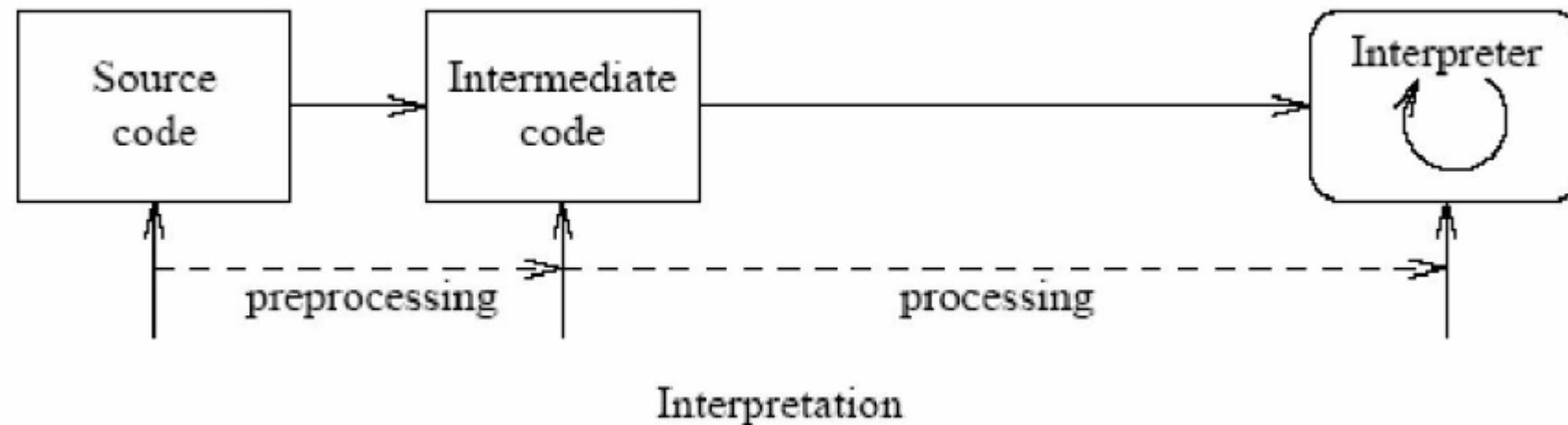

▪ High Level Language

- High Level Languages are user-friendly languages which are similar to English with vocabulary of words and symbols.
- These are easier to learn and require less time to write.
- They are problem oriented rather than 'machine' based.
- Program written in a high-level language can be translated into many machine languages and therefore can run on any computer for which there exists an appropriate translator.

COMPILERS AND INTERPRETERS

▪ Compiler

- A compiler is a special program that processes statements written in a particular programming language called as source code and converts them into machine language or “machine code” that a computer’s processor uses.
- Compiler translates high level language programs directly into machine language program.
- This process is called compilation.



COMPILERS AND INTERPRETERS...

▪ Interpreter

- An interpreter translates high-level instructions into an intermediate form, which it then executes.
- Compiled programs generally run faster than interpreted programs.
- The advantage of an interpreter, however, is that it does not need to go through the compilation stage during which machine instructions are generated.
- This process can be time-consuming if the program is long.

OPEN-SOURCE SOFTWARE

- Open source refers to a program or software in which the source code (the form of the program when a programmer writes a program in a particular programming language) is available to the general public for use and/or modification from its original design free of charge.
- Open source code is typically created as a collaborative effort in which programmers improve upon the code and share the changes within the community.
- The rationale for this movement is that a larger group of programmers not concerned with proprietary ownership or financial gain will produce a more useful and bug-free product for everyone to use.
- The basics behind the Open Source Initiative is that when programmers can read, redistribute and modify the source code for a piece of software, the software evolves.
- Open source sprouted in the technological community as a response to proprietary software owned by corporations.

PROPRIETARY SOFTWARE

- Proprietary software is privately owned and controlled.
- In the computer industry, proprietary is considered the opposite of open.
- A proprietary design or technique is one that is owned by a company.
- It also implies that the company has not divulged specifications that would allow other companies to duplicate the product.