ERATING SYSTEMS II
(Z UNITS) LECTURE 3

BALOGUN JEREMIAH ADEMOLA

ASSISTANT LECTURER,

DEPARTMENT OF COMPUTER SCIENCE AND MATHEMATICS
MOUNTAIN TOP UNIVERSITY, OGUN STATE, NIGERIA

COURSE OUTLINE

= States and State Diagrams Structures

= Dispatching and Context Switching

= Interrupts

= Concurrent Execution

= Mutual Exclusion Problem and Some Solutions

= Deadlock
= Models and Mechanisms (Semaphores, monitors etc.)

= Producer — Consumer Problems and Synchronization
= Multiprocessor Issues

= Scheduling and Dispatching, Memory Management
= Overlays, Swapping and Partitions

= Paging and Segmentations Placement and Replacement Policies
= Working Sets and Trashing
= Caching

()

INTERRUPT

= In digital computers, an interrupt is a response by the processor to an event
that needs attention from the software.

= An interrupt condition alerts the processor and serves as a request for the
processor to interrupt the currently executing code when permitted, so that the
event can be processed in a timely manner.

= If the request is accepted, the processor responds by suspending its current
activities, saving its state, and executing a function called an interrupt handler (or
an interrupt service routine, ISR) to deal with the event.

=>4

= This interruption is temporary, and, unless the interrupt indicates a fatal error,
the processor resumes normal activities after the interrupt handler finishes.

= Interrupts are commonly used by hardware devices to indicate electronic or
physical state changes that require attention.

= Interrupts are also commonly used to implement computer multitasking, especially
in real-time computing.

= Systems that use interrupts in these ways are said to be interrupt-driven @

INTERRUPT

Vector No. | Mnemonic Description Source
0 #DE Divide Error DIV and IDIV instructions.
1 #DB Debug Any code or data reference.
2 NMI Interrupt Mon-maskable external interrupt.
3 #BP Breakpoint INT 3 instruction.
4 #0OF Overflow INTO instruction.
5 #BR BOUND Range Exceeded BOUMD instruction.
6 #UD Invalid Opcode (UnDefined Opcode) UDZ instruction or reserved opcode.!
7 HMNM Device Not Available (Mo Math Coprocessor) Floating-point or WAIT/FWAIT instruction.
B8 #DF Double Fault Any instruction that can generate an exception, an NMI, or
an INTR.
9 #MF CoProcessor Segment Overrun (reserved) Floating-point instruction.<
10 #TS Invalid TSS Task switch or TSS access.
11 #MNP Segment Mot Present Loading segment registers or accessing system segments.
12 #55 Stack Segment Fault Stack operations and S5 register loads.
13 #OP General Protection Any memory reference and other protection checks.
14 #PF Page Fault Any memory reference.
15 Reserved
16 #MF Floating-Point Error (Math Fault) Floating-point or WAIT/FWAIT instruction.
17 #AC Alignment Check Any data reference in rr'u=.*mu:||r15.|r.3
18 #MC Machine Check Error codes (if any) and source are model dependent.?
19 #xXM SIMD Floating-Point Exception 5IMD Floating-Point Instruction®
20-31 Reserved
32-255 Maskable Interrupts External interrupt from INTR pin or INT ninstruction.

= A hardware interrupt is a condition related to the state of the hardware that may be
signaled by an external hardware device, e.qg.,

= an interrupt request (IRQ) line on a PC,

= detected by devices embedded in processor logic (e.qg., the CPU timer in IBM System/370),
to communicate that the device needs attention from the operating system (OS)

>
&=

= if there is no OS, from the "bare-metal" program running on the CPU.

= Such external devices may be part of the computer (e.g., disk controller) or they may
be external peripherals.
= For example, pressing a keyboard key or moving a mouse plugged into a PS/2 port

triggers hardware interrupts that cause the processor to read the keystroke or mouse
position.

= Hardware interrupts can arrive asynchronously with respect to the processor clock,
and at any time during instruction execution.

= Consequently, all hardware interrupt signals are conditioned by synchronizing them to th
processor clock, and acted upon only at instruction execution boundaries.

MASKING

= Processors typically have an internal interrupt mask register which allows
selective enabling and disabling of hardware interrupts.

=>4

= Each interrupt signal is associated with a bit in the mask register;

= on some systems, the interrupt is enabled when the bit is set and disabled when
the bit is clear,

= while on others, a set bit disables the interrupt.

= When the interrupt is disabled, the associated interrupt signal will be ignored
by the processor.

= Signals which are affected by the mask are called maskable interrupts.

= Some interrupt signals are not affected by the interrupt mask and therefore cannot
be disabled; these are called non-maskable interrupts (NMI).

= NMIs indicate high priority events which cannot be ignored under any
circumstances, such as the timeout signal from a watchdog timer.

= To mask an interrupt is to disable it, while to unmask an interrupt is to enable it.

= A spurious interrupt is an invalid, short-duration signal on an interrupt input.

= These are usually caused by glitches resulting from electrical interference, rac
conditions, or malfunctioning devices.

©

SOFTWARE INTERRUPTS

= A software interrupt is requested by the processor itself upon executing
particular instructions or when certain conditions are met.

= Every software interrupt signal is associated with a particular interrupt handler.

= A software interrupt may be intentionally caused by executing a special
instruction which, by design, invokes an interrupt when executed.

= Such instructions function similarly to subroutine calls and are used for a variety of
purposes, such as requesting operating system services and interacting with
device drivers (e.g., to read or write storage media).

= Software interrupts may also be unexpectedly triggered by program
execution errors.

= These interrupts typically are called traps or exceptions.

= For example, a divide-by-zero exception will be "thrown" (a software interrupt is
requested) if the processor executes a divide instruction with divisor equal to zero. @

= Typically, the operating system will catch and handle this exception.

= Each interrupt signal input is designed to be triggered by either a logic signal level or a particular
signal edge (level transition).

= Level-sensitive inputs continuously request processor service so long as a particular (high or low) logic level
is applied to the input.

= Edge-sensitive inputs react to signal edges: a particular (rising or falling) edge will cause a service request
to be latched; the processor resets the latch when the interrupt handler executes.

 LEVEL TRIGGERED

= A level-triggered interrupt is requested by holding the interrupt signal at its particular (high or low) active
logic level.

A device invokes a level-triggered interrupt by driving the signal to and holding it at the active level.

Level-triggered inputs allow multiple devices to share a common interrupt signal via wired-OR connections.

The processor polls to determine which devices are requesting service.

After servicing a device, the processor may again poll and, if necessary, service other devices before exiting
the ISR.

= EDGE-TRIGGERED

= An edge-triggered interrupt is an interrupt signaled by a level transition on the interrupt line, either a falling
edge (high to low) or a rising edge (low to high).

= A device wishing to signal an interrupt drives a pulse onto the line and then releases the line to its inactive
state.

= If the pulse is too short to be detected by polled I/0O then special hardware may be required to detect it. @

INTERRUPT HANDLER £

= In computer systems programming, an interrupt handler, also known as an interrupt service
routine or ISR, is a special block of code associated with a specific interrupt condition.

= Interrupt handlers are initiated by hardware interrupts, software interrupt instructions, or software
exceptions, and are used for implementing device drivers or transitions between protected modes of
operation, such as system calls.

= The traditional form of interrupt handler is the hardware interrupt handler.

= Hardware interrupts arise from electrical conditions or low-level protocols implemented in
digital logic, are usually dispatched via a hard-coded table of interrupt vectors, asynchronously
to the normal execution stream (as interrupt masking levels permit), often using a separate
stack, and automatically entering into a different execution context (privilege level) for the
duration of the interrupt handler's execution.

= In general, hardware interrupts and their handlers are used to handle high-priority conditions that
require the interruption of the current code the processor is executing.

= Interrupt handlers have a multitude of functions, which vary based on what triggered the
interrupt and the speed at which the interrupt handler completes its task.

= For example, pressing a key on a computer keyboard, or moving the mouse, triggers interrupts that call
interrupt handlers which read the key, or the mouse's position, and copy the associated information into

the computer's memory @
{

INTERRUPT FLAGS e

= Unlike other event handlers, interrupt handlers are expected to set interrupt flags to
appropriate values as part of their core functlonahty

= Even in a CPU which supports nested interrupts, a handler is often reached with all interrupts
globally masked by a CPU hardware operation.
= In this architecture, an interrupt handler would normally save the smallest amount of context necessary,

and then reset the global interrupt disable flag at the first opportunity, to permit higher priority
interrupts to interrupt the current handler.

= It is also important for the interrupt handler to quell the current interrupt source by some method
(often toggling a flag bit of some kind in a peripheral register) so that the current interrupt isn't
immediately repeated on handler exit, resulting in an infinite loop.

= Exiting an interrupt handler with the interrupt system in exactly the right state under every
eventuality can sometimes be an arduous and exacting task, and its mishandling is the source
of many serious bugs, of the kind that halt the system completely.
= These bugs are sometimes intermittent, with the mishandled edge case not occurring for weeks or
months of continuous operation.

= Formal validation of interrupt handlers is tremendously difficult, while testing typically identifies only
the most frequent failure modes, thus subtle, intermittent bugs in interrupt handlers often ship to end

customers. O
o

CONCURRENCY

CONCURRENCY X

= Concurrency is the interleaving of processes in time to give the appearance of
simultaneous execution.
= Thus it differs from parallelism, which offers genuine simultaneous execution.

= However the issues and difficulties raised by the two overlap to a large extent:
= sharing global resources safely is difficult;
= optimal allocation of resources is difficult;

= locating programming errors can be difficult, because the contexts in which errors occur
cannot always be reproduced easily.

= Parallelism also introduces the issue that different processors may run at different
speeds, but again this problem 1is mirrored in concurrency because different
processes progress at different rates.
= Concurrent processes come into conflict with each other when they are competing for the
use of the same resource.
= They are not necessarily aware of each other, but the execution of one process may affect the

behavior of competing processes.

CONCURRENCY — K SIMPLE EXAN

= The fundamental problem in concurrency is processes interfering with each other while
accessing a shared global resource.

= This can be illustrated with a surprisingly simple example:

chin = getchar();
chout = chin;
putchar(chout);

= Imagine two];Trocesses Pl and P2 both executing this code at the “same” time, with the
following interleaving due to multi-programming.

= P1 enters this code, but is interrupted after reading the character x into chin.
= P2 enters this code, and runs it to completion, reading and displaying the character y.
= P1 is resumed, but chin now contains the character y, so P1 displays the wrong character.

= The essence of the problem is the shared global variable chin.
= P1 sets chin, but this write is subsequently lost during the execution of P2.

= The general solution is to allow only one process at a time to enter the code that accesses chin:
such code is often called a critical section.

= When one process is inside a critical section of code, other processes must be prevented from
entering that section.

= This requirement is known as mutual exclusion @

CONCURRENCY — MUTUAL EXCLUSION

= Mutual exclusion is in many ways the fundamental issue in concurrency.

= [t is the requirement that when a process P is accessing a shared resource R, no other
process should be able to access R until P has finished with R.

= Examples of such resources include files, I/O devices such as printers, and shared
data structures.

>4
&=

= There are essentially three approaches to implementing mutual exclusion.

= Leave the responsibility with the processes themselves: this is the basis of most
software approaches.

= These approaches are usually highly error-prone and carry high overheads.

= Allow access to shared resources only through special-purpose machine
instructions: i.e. a hardware approach.

= These approaches are faster but still do not offer a complete solution to the problem, e.q.
they cannot guarantee the absence of deadlock and starvation.

= Provide support through the operating system, or through the programming
language.

= Three approaches in this category includes: semaphores, monitors, ar
message passing.

MUTUAL EXCLUSION - SEMAPHORES =

= The fundamental idea of semaphores is that processes *“communicate” via
global counters that are initialised to a positive integer and that can be
accessed only through two atomic operations.

= semSignal(x) increments the value of the semaphore x.

= semWait(x) tests the value of the semaphore x: if x > 0, the process decrements x
and continues; if x = 0, the process is blocked until some other process performs a
sem>Signal, then it proceeds as above.

= A critical code section is then protected by bracketing it between these two
operations:

semWait (x);
<critical code section>
semSignal (x);

= In general the number of processes that can execute this critical section
simultaneously is determined by the initial value given to x.

= [f more than this number try to enter the critical section, the excess processes will
be blocked until some processes exit.

« Most often, semaphores are initialised to one. @

MUTUAL EXCLUSION - MONITORS X

= The principal problem with semaphores is that calls to semaphore operations
tend to be distributed across a program, and therefore these sorts of programs
can be difficult to get correct, and very difficult indeed to prove correct!

= Monitors address this problem by imposing a higher-level structure on
accesses to semaphore variables.

= A monitor is essentially an object (in the Java sense) which has the semaphore
variables as internal (private) data and the semaphore operations as (public)
operations.

= Mutual exclusion is provided by allowing only one process to execute the monitor’s
code at any given time.

= Monitors are significantly easier to validate than “bare” semaphores for at least

two reasons:
= all synchronisation code is confined to the monitor; and
{
= once the monitor is correct, any number of processes sharing the resource will operate correctly @

MUTUAL EXCLUSION — MESSAGE PASSING .

= With an approach based on message ci)assing, processes operate in isolation from each
other (i.e. they do not share data), and they exchange information where necessary by
the sending and receiving of messages.

= Synchronisation between processes is defined by the blocking policy attached to the
sending and receiving of messages.

= The most common combination is

= Non-blocking send: When a process sends a message, it continues executing without
waiting for the receiving process.

= Blocking receive: When a process attempts to receive a message, it blocks until the
message 1s available.

= With this blocking policy, mutual exclusion can be achieved for a set of processes that
share a mailbox box.

= Some number of messages Susually one) 1s sent to box initially by the system, then
each process executes the following code when it wants to enter the critical section:

receive (box);
<critical code section>

send (box); @

DEADLOCK

>

DEADLOCK 7

= Deadlock i1s defined as the permanent blocking of a set of A
processes that either compete for global resources or T

communicate with each other. s
= It occurs when each process in the set is blocked awaiting an B
event that can be triggered only by another blocked process in Required .
the set. GeB -
6L
= Consider the figure above, in which both processes P and Q i’
need bgth resources A and B simultaneously to be able to TR e AN
prOcee . [7] = both P and Q want resource A \—T—Y“—J
= Thus P has the form get A, ... get B, ..., release A, ..., release B, and e Roquised \ ey
Q has the form get B, ... get A, ..., release B, ..., release A. [- otk egin B Required
T Y i o i e
= Q) acquires both resources, then releases them. P can operate S e ——
freely later. g
of Q
= O acquires both resources, then P requests A. P is blocked until T L2 a3
the resources are released, but can then operate freely. el -
. . >
= Q acquires B, then P acquires A, then each requests the other gy = =5

resource. Deadlock is now inevitable.

£

!

Get A

= P acquires A, then Q acquires B, then each requests the other Requied
resource. Deadlock is now inevitable. Gt 5,
. . 6
= P acquires both resources, then Q requests B. Q Is blocked .
until the resources are released, but can then operate freely. p Progres
Get A Release A GetB Release B
= P acquires both resources, then releases them. Q can operate et e A

f 1" e e]y] a t 61’. § — both P and @ want resource B sl = possible progress path of Pand Q.

Honzental poriton of path indicates P 1s exccuting and Q 1s waitmg.
Vertical portion of path indicates Q is executing and P is waiting.

CONDITIONS FOR DEADLOCK

= Three policy conditions are necessary for deadlock to be possible.
= Mutual exclusion - Only one process may use a resource at one time.
= Hold and wait - A process may hold some resources while waiting for others.
= No preemption - No process can be forced to release a resource.

eV

= A fourth condition is required for deadlock to actually occur.

= Circular wait - A closed chain of processes exists, such that each process is
blocked waiting for a resource held by another process in the set.

= Three approaches exist for dealing with deadlock.

= Prevention involves adopting a static policy that disallows one of the four
conditions above.

= Avoidance involves making dynamic choices that guarantee prevention.

= Detection and recovery involves recognising when deadlock has occurred,
and trying to recover @

DEADLOCK PREVENTION — HOLD AND WAIT

=We could force a process to request all of its resources at
one time:
= 1f successful, it would be able to proceed to completion;

=1f unsuccessful, it would be holding no resources that could block
other processes.

>4
&=

=The principal problems are that

=modular program may not be aware of all of its resource
requirements;

=a process needing several resources may be held up a long time
waiting for them all to be available simultaneously;

=resources allocated to a process may not be used for a long time
leading to inefficient allocations. @

DEADLOCK PREVENTION — NO PREEMPTION

=We could force a process that holds R and then
unsuccessfully requests R’ to release R.

=Or we could force a process that holds R to release it, 1f it is
requested by another process.

These approaches work only with resources whose state
can easlily be saved and restored, and even then they lead
to obvious inefficiencies.

@

DEADLOCK PREVENTION — CIRCULAR WAIT =

=We could force all processes to request resources in the
same order.

*Then two processes both needing A and B would both

request A first, guaranteeing that B would be available for
the successful process.

=Disallowing circular wait suffers from similar inefficiencies
as disallowing hold and wait.

@

DEADLOCK AVOIDANCE

=Deadlock avoidance 1s subtly different from deadloéE
prevention:

=we allow the three necessary conditions for deadlock,

= but we dynamically allocate resources in such a way that deadlock
never occurs.

=There are two principal approaches.
= Do not start a process if its demands might lead to deadlock.
= This strategy is very conservative and thus inefficient.

Do not %rant a resource request if this allocation might lead to
deadlock.

= The basic idea is that a request is granted only if some allocation of
the remaining free resources is sufficient to allow all processes to

complete.
@

DEADLOCK DETECTION AND RECOVERY '

=Both prevention and avoidance of deadlock lead to conservative
allocation of resources, with corresponding inefficiencies.

= Deadlock detection takes the opposite approach:

= make allocations liberally, allowing deadlock to occur (on the assumption that
it will be rare),

= apply a detection algorithm periodically to check for deadlock, and
= apply a recovery algorithm when necessary

= The detection algorithm. can be applied at every resource allocation, or
less frequently, depending on the trade-off between the likelihood of
deadlock occurring and the cost of the algorithm.

= Detection algorithms are broadly similar to the avoidance algorithms
discussed previously, and are able to identify which processes are
deadlocked under the current resource allocation. @

DEADLOCK DETECTION AND RECOVERY...

= Recovery algorithms vary a lot in their severity:
= Abort all deadlocked processes.
= Though drastic, this is probably the most common approach!
= Back-up all deadlocked processes.

= This requires potentially expensive rollback mechanisms, and of course the
original deadlock may recur.

= Abort deadlocked processes one at a time until the deadlock no longer
exists.

= Preempt resources until the deadlock no longer exists.

= With the last two approaches, processes or resources are chosen to
minimise the global “loss” to the set of processes, by minimising the
loss of useful processing with respect to relative priorities @

