

MOUNTAIN TOP UNIVERSITY

E-Courseware

COLLEGE OF BASIC AND

APPLIED SCIENCES

Mountain Top University

Kilometre 12, Lagos-Ibadan Expressway, MFM Prayer City, Ogun State.

PHONE: (+234)8053457707, (+234)7039395024, (+234) 8039505596

EMAIL: support@mtu.edu.ng

Website: www.mtu.edu.ng.

Published By:

Mountain Top University

COURSE GUIDE

COURSE TITLE: GENERAL BIOLOGY I

COURSE CODE: BIO 101

LECTURER(S): Mrs. O. Ayodele

Mr. G. Adebami

Dr. (Mrs.) O. Oyebanji

Mrs. I. Adefisan

Mrs. O. Rabiu

Dr. (Mrs.) O. Opere

Dr. F. Ibadin

COURSE OBJECTIVES

At the end of this course, students should be able to: understand the basic and foundational concept of general biology. The course will teach student the various aspects of the study of biology ranging from the virus, cells, and microscopic organisms to the very dominant and visible organisms in our surroundings, including the harmful and beneficial organisms. Students would also learn about the issues concerning their very existence and the environment in which they live.

COURSE CONTENTS	PAGE
Lecture One: Origin of life; cell structure and organization; functions of cellular organelles	6
Lecture Two: Concept of biological diversity, Characteristics and classification of viruses, of Virus Monera, Protista and Fungi	27
Lecture Three: Diversity characteristic and classification of the kingdom Plantae	38
Lecture Four: Diversity characteristics and classification of Kingdom Animalia (Invertebrates)	50
Lecture Five: Diversity characteristics and classification of Kingdom Animalia (Chordates)	65
Lecture Six: Heredity and Evolution	79
Lecture Seven Elements of Ecology	88
Lecture Eight Types of Habitats	93
Lecture Eight Interrelationships between organisms in the ecosystem	102

LECTURE 1: ORIGIN OF LIFE; CELL STRUCTURE AND ORGANIZATION; FUNCTIONS OF CELLULAR ORGANELLES

1.0 Introduction

This lecture focuses on the theories of origin of life with emphasis on the cell theory, types of cells and their distinguishing features, differences between plant and animal cells as well as functions of cellular organelles.

Objectives:

At the end of this lecture, students should be able to:

- ✓ State the cell Theory
- ✓ Describe the types of cells.
- ✓ Identify cellular organelles and their functions
- ✓ Explain how living things influence their environment

Pre-Test

1. What is Biology
2. Where do you think living things originate from?
3. Define cell and mention two organelles you know.

1.1 PROPOSED THEORIES OF ORIGIN OF LIFE

- The big bang theory: life begins by a collision sparks of atmospheric molecules.
- Theory of evolution
- Theory of spontaneous generation: This states that water or land bears the potential to generate, 'spontaneously', different kinds of organism. The theory implied continuity between living and non-living matter.
- The cell theory

1.2 LIFE BEGINS WITH CELL

- From huge menacing sharks to minuscule exotic orchids, life is very diverse. despite the diversity, all living things (organisms) share certain characteristics which give insight into the nature of life and help distinguish living things from non-living things.

- The complex organization of living things begins with small molecules (non-living: carbon hydrogen, oxygen, and nitrogen) that join to form larger molecules within a cell.
- **A cell is the smallest, most basic unit of life. Although a cell is alive, it is made from non-living molecules.**

Unicellular organisms: one single cell

Multicellular organism: more than one cell.

- In multicellular organisms, similar cells combine to form tissues, tissues make up organs (e.g. various tissues combine to form a heart, kidney, leaf etc.). Organs work together in Organ systems (e.g. heart and blood vessels form the cardiovascular system). Various organ systems work together within complex organisms.

1.2.1 Formulation of the Cell Theory:

In 1838, Theodor Schwann and Matthias Schleiden were enjoying after dinner coffee and talking about their studies on cells. When Schwann heard Schleiden describe plant cells with nuclei, he was struck by similarity of these plant cells to cells he had observed in animal tissues.

The two scientists went immediately to Schwann's lab to look at his slides.

Schwann in his book on animal and plant cells (1839), a treatise devoid of acknowledgements of anyone else's contributions, including that of Schleiden (1838) summarized his observations into three conclusions about cells:

- The cell is the unit of structure, physiology, and organization in living things.
- The cell retains a dual existence as a distinct entity and a building block in the construction of organisms.
- Cells form by free-cell formation, similar to the formation of crystals (spontaneous generation).

The first two principles (tenets) are correct, but the third is clearly wrong. The correct interpretation of cell formation by division was finally promoted by others and formally enunciated in Rudolph Virchow's powerful dictum; 'Omnis cellula e cellula' "All cells arise from pre-existing cells."

Modern Cell Theory

The following statements that represent the modern cell theory:

- All known living things are made up of cells
- The cell is the structural functional unit of all living things
- All cells arise from pre-existing cells by division. (Spontaneous Generation does not occur)
- Cells contain hereditary information which is passed from cell to cell during cell division.
- All cells are basically the same in chemical composition.
- All energy flow (metabolism and biochemistry) of life occurs within cells.

1.3 CELL STRUCTURE ORGANIZATION

1.3.1 Overview

Both living and non-living things are composed of molecules made from chemical elements such as Carbon, Hydrogen, Oxygen, and Nitrogen. The organization of these molecules into cells is one feature that distinguishes living things from all other matter.

- **The cell is the smallest unit of matter that can carry out all the processes of life.**
- Every living thing - from the tiniest bacterium to the largest whale - is made of one or more cells.

Unicellular- one cell

Multicellular-more than one cell

The cell theory

Cell Theory consists of three principles:

- a. All living things are composed of one or more cells.
- b. Cells are the basic units of structure and function in an organism.
- c. Cells come only from the replication of existing cells.

Cells can be cultured to produce more cells:

- In vitro = outside organism or cell
- In vivo = inside organism or cell

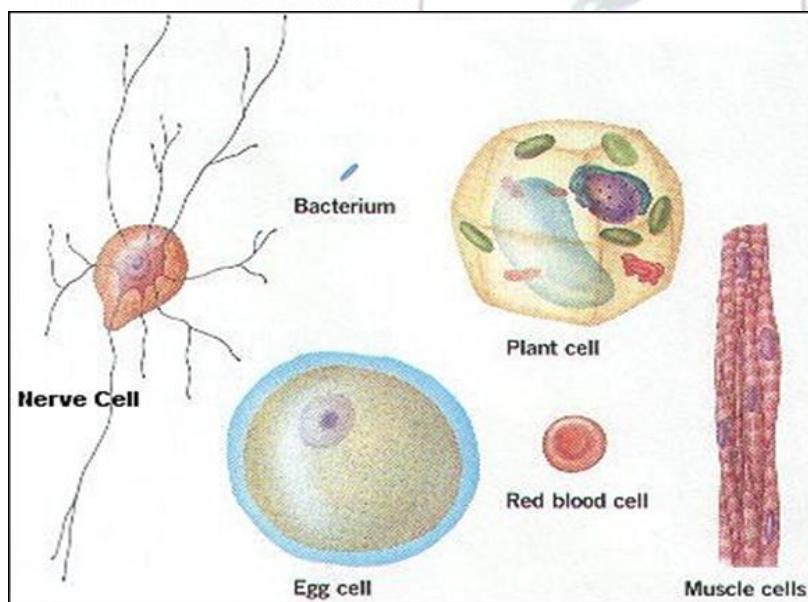
1.3.2 Cell Diversity

Not all cells are alike. Even cells within the same organism show enormous diversity in size, shape, and internal organization. The body contains around 10^{13} to 10^{14} cells of around 300 different cell types.

1.3.3 Cell size

1. A few types of cells are large enough to be seen by the unaided eye. The human egg (ovum) is the largest cell in the body, and can (just) be seen without the aid of a microscope.

2. Most cells are small for two main reasons:


a). The cell's nucleus can only control a certain volume of active cytoplasm.

b). Cells are limited in size by their surface area to volume ratio.

A group of small cells has a relatively larger surface area than a single large cell of the same volume. This is important because the nutrients, oxygen, and other materials a cell requires must enter through its surface.

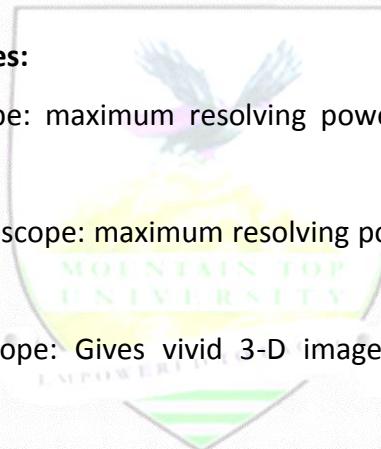
As a cell grows larger at some point its surface area becomes too small to allow these materials to enter the cell quickly enough to meet the cell's need.

Cells come in a variety of shapes, and the shape helps determine the function of the cell (e.g. Nerve cells are long to transmit messages in the body, while red blood cells are disk shaped to move through blood vessels).

© IHW September 2005.

1.4 VIEWING CELLS UNDER THE MICROSCOPE

The study of cell structure includes the fields of CYTOLOGY (for cells) and HISTOLOGY (for tissues). The function of cells is studied in CELL PHYSIOLOGY, BIOCHEMISTRY, and CYTOGENETICS.


The first instrument used in studying cell structure was the light microscope, which remains an important tool today. Subsequently, the TRANSMISSION ELECTRON MICROSCOPE and the SCANNING ELECTRON MICROSCOPE were developed.

Before an object can be viewed, it is necessary to stain the material and cut it into samples thin enough for a light beam or an electron beam to penetrate them. First, the tissue is treated, to "fix" the structures so they will not be altered by the staining and slicing. Usually this is done by using chemicals such as ALCOHOL and FORMALDEHYDE.

Stains have been developed that react differently with different cell structures, depending on their chemical composition or enzymatic activity. The use of stains containing radioactive atoms, known as AUTORADIOGRAPHY, often involves feeding cells specific compounds with radioactive atoms and then observing the distribution of radioactive events on a photographic film emulsion.

Relative Powers of Microscopes:

1. Compound Light Microscope: maximum resolving power = 200 nm (maximum useful magnification = ~ 1000 X)
2. Transmission Electron Microscope: maximum resolving power = 0.5 nm (maximum useful magnification = $>30,000$ X)
3. Scanning Electron Microscope: Gives vivid 3-D images, but less magnification than transmission EM.

1.5 Types of Cells

The two main types of cells are the Prokaryotic and Eukaryotic cells. The Archaea which were originally thought to be prokaryotes and very related to the Eukaryotes was recently added.

1. Prokaryotes

- Pro = before; karyon = nucleus
- relatively small - 5 to 10 μm
- lack membrane-bound organelles
- earliest cell type.

The prokaryotes consist of Bacteria (Eubacteria) and Archaea (Archaeabacteria).

The Archaea:

- relatively small - 5 to 10 μm
- lack membrane-bound organelles

- Usually live in extreme environments (e.g. thermophiles, halophiles, etc)

2. Eukaryotes

- Eu = true; karyon = nucleus
- contain membrane-bound organelles
- Evolved from prokaryotes by endosymbiotic association of two or more prokaryotes
- Include Protists, Fungi, Animals, and Plants.

1.5.1 Prokaryotic Cells

- Prokaryotic cells are less complex and are unicellular. They do not have a nucleus and membrane-bound organelles
- Most have a cell wall surrounding the cell membrane and a single, looped chromosome (genetic material) in the cytoplasm
- Example Include bacteria and blue-green algae; Found in the kingdom Monera

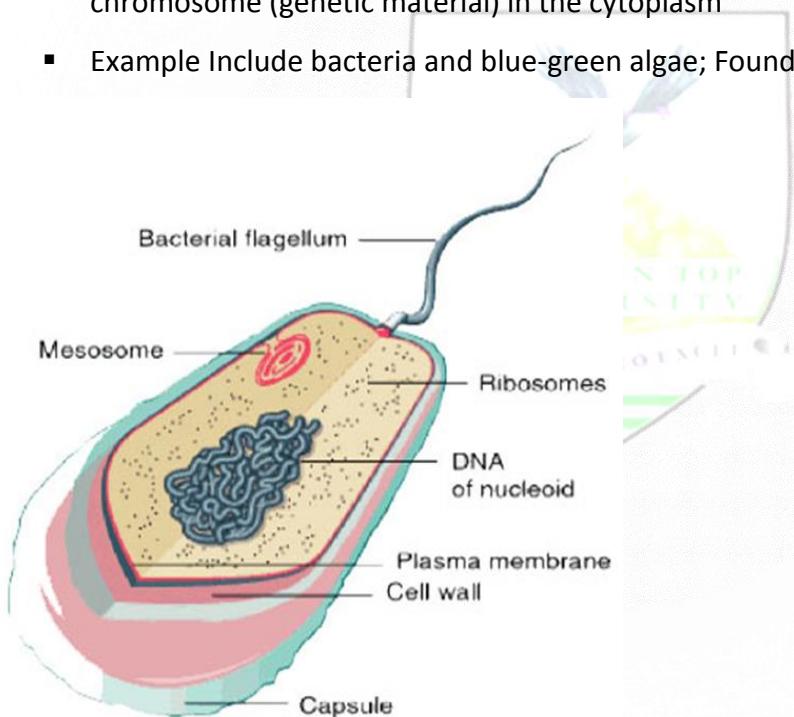


Fig.: A bacterial cell. Source: www.uic.edu.htm.

- Capsule - outer sticky protective layer
- Cell Wall - rigid structure which helps the bacterium maintain its shape. This is not the same as the cell wall of a plant cell
- Plasma membrane - separates the cell from the environment
- Mesosome - infolding of plasma membrane to aid in compartmentalization
- Nucleoid - region where the naked DNA is found

- Cytoplasm:
- ✓ semi-fluid cell interior
- ✓ no membrane-bound organelles
- ✓ location for metabolic enzymes
- ✓ location of ribosomes for protein synthesis

1.5.2 Eukaryotic Cells

- These are more complex cells
- Includes both unicellular and multicellular organisms.
- They possess a true nucleus and membrane-bound organelles.
- Organelles are internal structures in cell that perform specific functions.
- Organelles are surrounded by a single or double membrane.
- The entire cell is surrounded by a thin cell membrane that controls what enters and leaves the cell.
- The Nucleus is located at the center of the cell and contains the genetic material (DNA). It controls the cell's activities

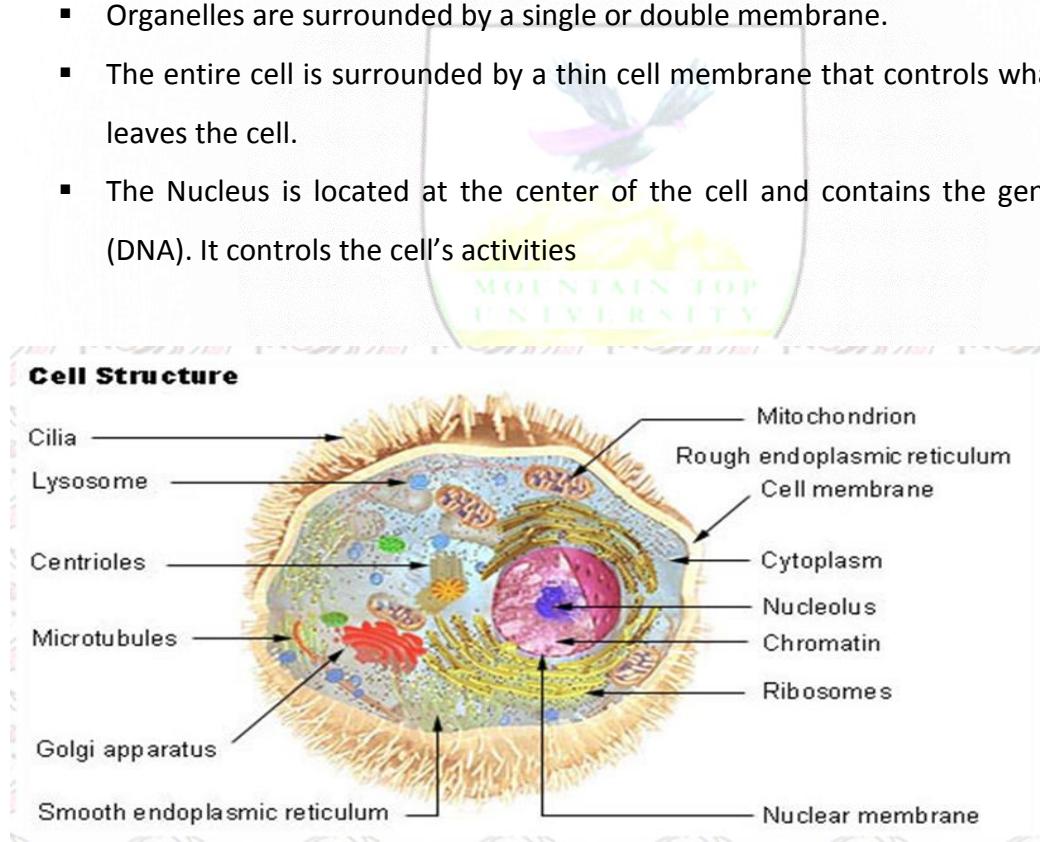


Fig: Structure of a typical Eukaryotic cell.

Source: training.seer.cancer.gov/module_anatomy/unit2_1_cell_functions_1.html

Differences Between Prokaryotic and Eukaryotic Cells

	Prokaryotes	Eukaryotes
Typical organisms	bacteria	Protoctista, fungi, plants, animals
Typical size	~ 1-10 μm	~ 10-100 μm (sperm cells) apart from the tail, are smaller)
Type of nucleus	Nuclear body No nucleus	real nucleus with nuclear envelope
DNA	circular (ccc DNA)	linear molecules (chromosomes) with histone proteins
Ribosomes	70S	80S
Cytoplasmatic structure	very few structures	highly structured by membranes and a cytoskeleton
Cell movement	Flagellae/cilia made of flagellin	flagellae and cilia made of tubulin
Mitochondria	none	1 - 100 (though RBC's have none)
Chloroplasts	none	in algae and plants
Organization	usually single cells	single cells, colonies, higher multicellular organisms with specialized cells
Cell division	Binary fission (simple division)	Mitosis (normal cell replication) Meiosis (gamete production)

Plant and Animal Cells



Fig: A plant cell. Source: www.uic.edu.htm

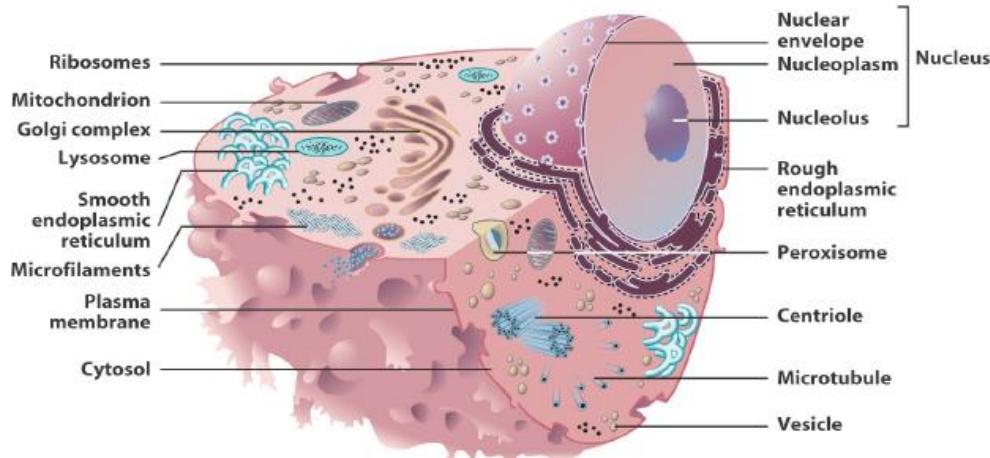


Fig: An animal cell. Source: www.uic.edu.htm

Most of the organelles and other parts of the cell are common to all Eukaryotic cells. Cells from different organisms have an even greater difference in structure.

Plant and animal cells have several differences and similarities. For example, animal cells do not have a cell wall or chloroplasts but plant cells do. Animal cells are round and irregular in shape while plant cells have fixed, rectangular shapes. Plant and animal cells are both eukaryotic cells, so they have several features in common, such as the presence of a cell membrane, and cell organelles like the nucleus, mitochondria and endoplasmic reticulum.

- Plant cells have three additional structures not found in animal cells:

- Cellulose cell walls
- Chloroplasts
- A central vacuole.

Comparison of structures between animal and plant cells

Organelles	Typical animal cell	Typical plant cell
Organelles	<ul style="list-style-type: none"> • Nucleolus (<i>within nucleus</i>) • Rough ER • Smooth ER • 80S Ribosomes • Cytoskeleton • Golgi apparatus • Cytoplasm • Mitochondria • Vesicles • Vacuoles • Lysosomes • Centrioles 	<ul style="list-style-type: none"> • Nucleolus (<i>within nucleus</i>) • Rough ER • Smooth ER • 80S Ribosomes • Cytoskeleton • Golgi apparatus • Cytoplasm • Mitochondrion • Vesicle • Chloroplast and other plastids • Tonoplast
Additional structures	<ul style="list-style-type: none"> • Flagellae • Plasma membrane 	<ul style="list-style-type: none"> • Cellulose cell wall • Plasmodesmata

1.6. Functions of Cellular Organelles

Originally the term organelle referred to only membranous structures, including any well-defined subcellular structure. Just as all the assembly lines of a factory are in operation at the same time, so all the organelles of a cell function simultaneously. Raw materials enter a factory and then are turned into various products by different departments. In the same way, chemicals are taken up by the cell and then processed by the organelles.

1.6.1 The Plasma Membrane

Cells are surrounded by an outer plasma membrane. The plasma membrane separates the inside of the cell, termed the cytoplasm, from the outside. Plasma membrane integrity is necessary to the life of the cell.

The plasma membrane primarily consists of protein (about 60% of the membrane) and lipid, or fat (about 40% of the membrane). The primary lipid is called phospholipid, and molecules of phospholipid form a 'phospholipid bilayer' (two layers of phospholipid molecules). This bilayer forms because the two 'ends' of phospholipid molecules have very different characteristics: one end is polar (or hydrophilic) and one (the hydrocarbon tails below) is non-polar (or hydrophobic):

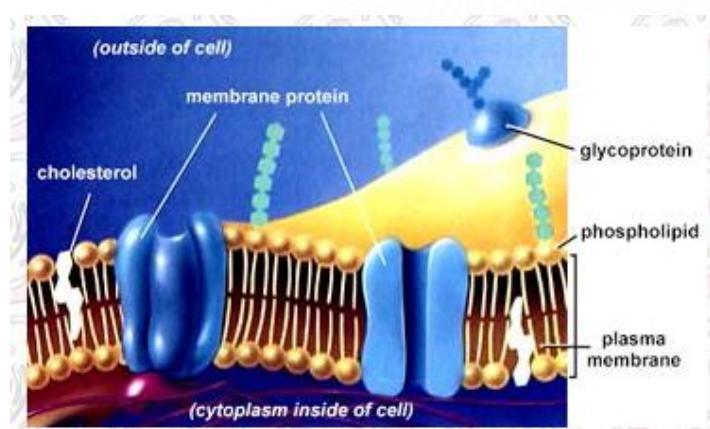
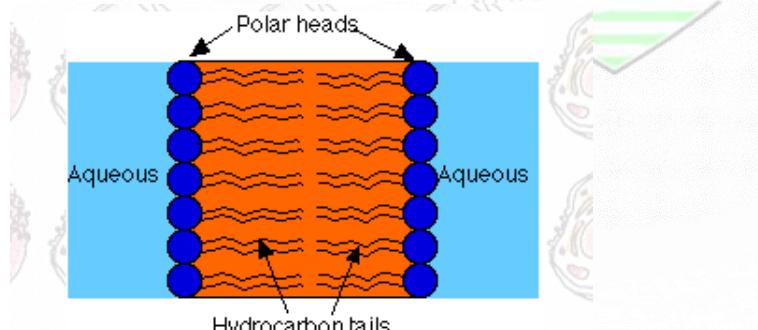



Fig: a. Phospholipid bilayer, b. Plasma membrane. © Cmassengale

Functions of the plasma membrane include: supporting and retaining the cytoplasm being a selective barrier.

The cell is separated from its environment and needs to get nutrients in and waste products out. Some molecules can cross the membrane without assistance, most cannot. Water, non-polar molecules and some small polar molecules can cross. Non-polar molecules penetrate by dissolving into the lipid bilayer. Most polar compounds such as amino acids, organic acids and inorganic salts are not allowed entry, but instead must be specifically transported across the membrane by proteins.

Movement across Membranes

1. Passive processes - require no expenditure of energy by a cell:

Simple diffusion = net movement of a substance from an area of high concentration to an area of low concentration (check this animation - How diffusion works). The rate of diffusion is influenced by:

- concentration gradient
- cross-sectional area through which diffusion occurs
- temperature
- molecular weight of a substance
- distance through which diffusion occurs

- a. Osmosis: diffusion of water across a semipermeable membrane (like a cell membrane) from an area of low solute concentration to an area of high solute concentration.
- b. Facilitated diffusion = movement of a substance across a cell membrane from an area of high concentration to an area of low concentration. In the example below, a ligand molecule (e.g., acetylcholine) binds to the membrane protein. This causes a conformational change or, in other words, an 'opening' in the protein through which a substance (e.g., sodium ions) can pass.

2. Active processes - require the expenditure of energy by cells:

Active transport: movement of a substance across a cell membrane from an area of low concentration to an area of high concentration using a carrier molecule.

Endo- & exocytosis: moving material into (endo-) or out of (exo-) cell in bulk form.

1.6.2 Cellulose Cell wall

This is one of the most important features of all plants. Fungi such as Mushrooms and Yeast also have cell walls, but these are made of chitin. The cell wall is freely permeable (porous), and so has no direct effect on the movement of molecules into or out of the cell. The rigidity of their cell walls helps both to support and protect the plant.

Plant cell walls are of two types: Primary and Secondary cell walls

- a) Primary (cellulose) cell wall - While a plant cell is being formed, a middle lamella made of pectin, is formed and the cellulose cell wall develops between the middle lamella and the cell membrane. As the cell expands in length, more cellulose is added, enlarging the cell wall. When the cell reaches full size, a secondary cell wall may form.
- b) Secondary (lignified) cell wall - The secondary cell wall is formed only in woody tissue (mainly xylem). The secondary cell wall is stronger and waterproof and once a secondary cell wall forms, a cell can no longer grow.

1.6.3 The Nucleus

The nucleus, which has a diameter of about $5 \mu\text{m}$, is a prominent structure in the eukaryotic cell. The nucleus is of primary importance because it stores the genetic material DNA which governs the characteristics of the cell and its metabolic functioning. Every cell in the same individual contains the same DNA, but, in each cell type, certain genes are turned on and certain others are turned off.

The nucleus is separated from the cytoplasm by a double membrane known as the nuclear envelope, which is continuous with the endoplasmic reticulum. The nuclear envelope has nuclear pores of sufficient size (100 nm) to permit the passage of proteins into the nucleus and ribosomal subunits out of the nucleus.

The structural features of the nucleus include the following.

- Chromatin: DNA and proteins
- Nucleolus: Chromatin and ribosomal subunits
- Nuclear envelope: Double membrane with pores

The nucleus is normally the largest organelle within a Eukaryotic cell.

Prokaryotes have no nucleus, having a nuclear body instead. This has no membrane and a loop of DNA - cccDNA - and no chromatin proteins)

The nucleus contains the cell's chromosomes (human, 46, fruit fly 6, fern 1260) which are normally uncoiled to form a chromatinic network, which contain both linear DNA and proteins, known as histones. These proteins coil up (dehydrate) at the start of nuclear division, when the chromosomes first become visible. Whilst most cells have a single nucleus some cells (macrophages, phloem companion cells) have more than one and fungi have many nuclei in their cytoplasm – they are coenocytic (= common cytoplasm throughout).

The nucleus is surrounded by a double membrane called the nuclear envelope, which has many nuclear pores through which mRNA, and proteins can pass. These dimples make it look like a golf ball. Most nuclei contain at least one nucleolus (plural, nucleoli). The nucleoli are where ribosomes are synthesized. When a nucleus prepares to divide, the nucleolus disappears.

1.6.4 Ribosomes

- Unlike most other organelles, ribosomes are not surrounded by a membrane.
- Ribosomes are the site of protein synthesis in a cell.
- They are the most common organelles in almost all cells.
- Some are free in the cytoplasm (Prokaryotes); others line the membranes of rough endoplasmic reticulum (rough ER).

They exist in two subunits:

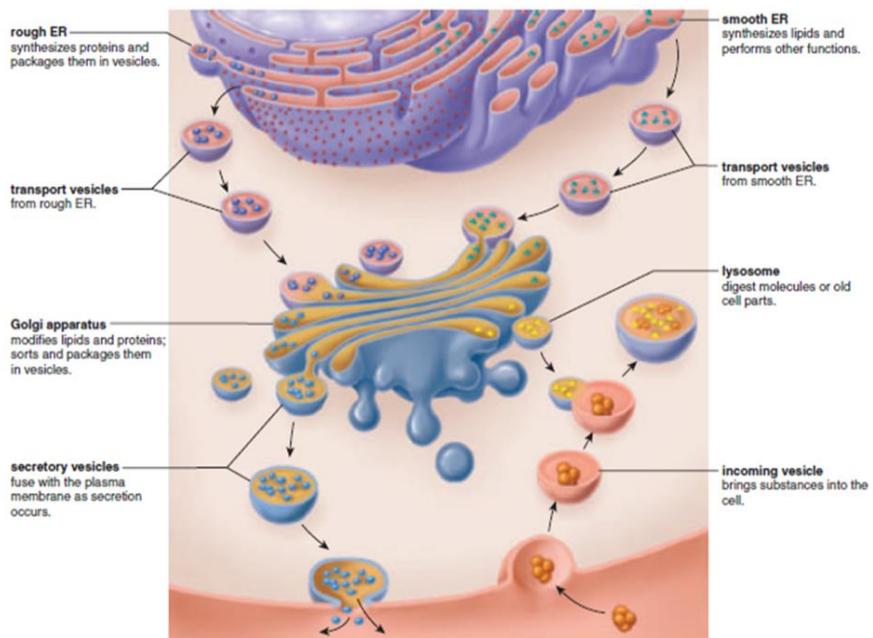
- 70s are found in all Prokaryotes, chloroplasts and mitochondria, suggesting that they have evolved from ancestral Prokaryotic organisms. They are free-floating.
- 80s found in all eukaryotic cells – attached to the rough ER (they are rather larger).

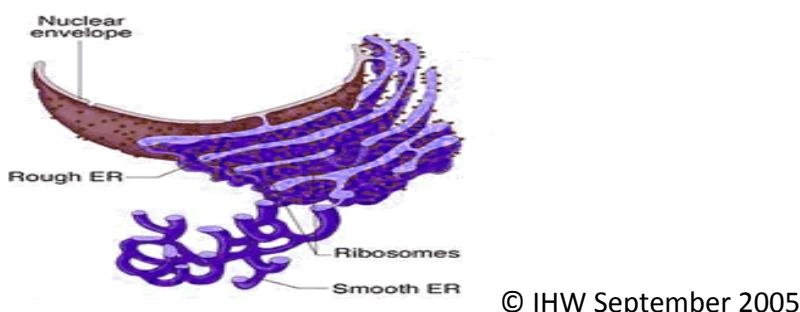
Groups of 80s ribosomes, working together, are known as a polyribosome.

Proteins synthesized at ribosomes attached to the endoplasmic reticulum have a different fate. They are eventually secreted from the cell or become a part of its external surface.

1.6.5 The Endomembrane System

The endomembrane system consists of the nuclear envelope, the endoplasmic reticulum, the Golgi apparatus, and several vesicles (tiny membranous sacs). This system compartmentalizes the cell so that certain enzymatic reactions are restricted to specific regions. Organelles that make up the endomembrane system are connected either directly or by transport vesicles.




Fig: The Endomembrane system. Source: Foundation Biology

1.6.5.1 Endoplasmic Reticulum (ER)

The ER is a system of membranous tubules and sacs (saccules). The primary function of the ER is to act as an internal transport system, allowing molecules to move from one part of the cell to another. The quantity of ER inside a cell fluctuates, depending on the cell's activity. Cells with a lot include secretory cells and liver cells.

The rough ER is studded with 80s ribosomes and is the site of protein synthesis. It is an extension of the outer membrane of the nuclear envelope, allowing mRNA to be transported swiftly to the 80s ribosomes, where they are translated in protein synthesis. The smooth ER is where polypeptides are converted into functional proteins and where proteins are prepared for secretion. It is also the site of lipid and steroid synthesis, and is associated with the Golgi apparatus. Smooth ER has no 80s ribosomes and is also involved in the regulation of calcium levels in muscle cells, and the breakdown of toxins by liver cells.

Both types of ER transport materials throughout the cell.

© IHW September 2005

1.6.5.2 The Golgi Apparatus

The Golgi apparatus is named for Camillo Golgi, who discovered its presence in cells in 1898. It consists of a stack of three to twenty slightly curved saccules whose appearance can be compared to a stack of pancakes. In animal cells, one side of the stack (the inner face) is directed toward the ER, and the other side of the stack (the outer face) is directed toward the plasma membrane. Vesicles can frequently be seen at the edges of the saccules.

The Golgi apparatus is involved in the formation of lysosomes, vesicles that contain proteins and remain within the cell. It works closely with the smooth ER to modify proteins for export by the cell. The proteins made at the rough ER have specific molecular tags that serve as “zip codes” to tell the Golgi apparatus whether they belong in a lysosome or in a secretory vesicle.

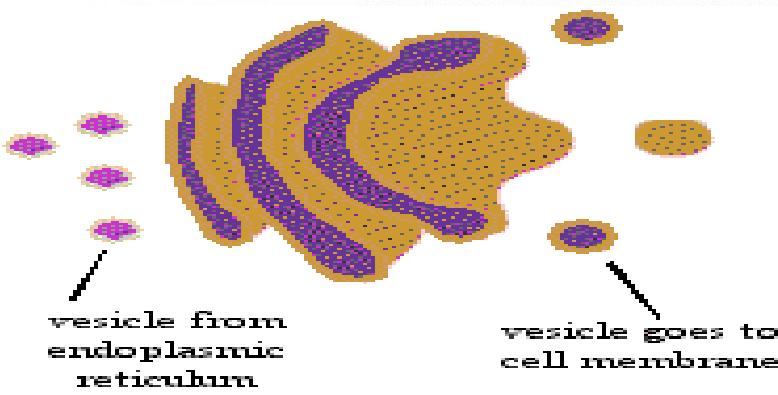


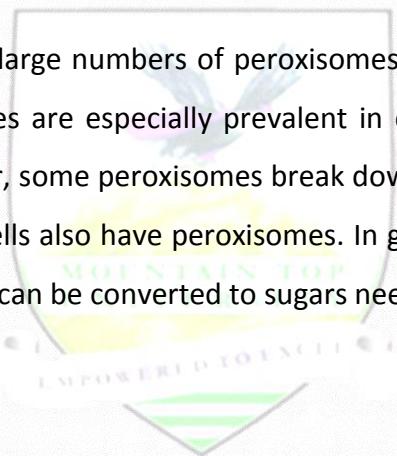
Fig: The Golgi apparatus. © IHW September 2005

1.6.5.3 Lysosomes

Lysosomes are membrane-bounded vesicles produced by the Golgi apparatus. They contain hydrolytic digestive enzymes.

Lysosomes are the site of protein digestion – thus allowing enzymes to be re-cycled when they are no longer required. They are also the site of food digestion in the cell, and of bacterial digestion in phagocytes. Lysosomes contain many enzymes for digesting all sorts of molecules. The absence or malfunction of one of these results in a lysosomal storage disease. Occasionally, a child inherits the inability to make a lysosomal enzyme, and therefore has a lysosomal storage disease. Instead of being degraded, the molecule accumulates inside lysosomes, and illness develops when they swell and crowd the other organelles.

For example, in Tay Sachs disease, the cells that surround nerve cells cannot break down a certain lipid, and the nervous system is affected. At about six months, the infant can no longer


see and, then, gradually loses hearing and even the ability to move. Death follows at about three years of age.

1.6.5.3 Peroxisomes

Peroxisomes, like lysosomes, are membrane-bounded vesicles that enclose enzymes. However, the enzymes in peroxisomes are synthesized by cytoplasmic ribosomes and transported into a peroxisome by carrier proteins. Typically, peroxisomes contain enzymes whose action results in formation of hydrogen peroxide (H_2O_2).

Hydrogen peroxide is a toxic molecule; thus, it is immediately broken down to water and oxygen by another peroxisomal enzyme called catalase. The enzymes in a peroxisome depend on the function of the cell. Peroxisome enzymes function to detoxify drugs, alcohol, and other potential toxins.

The liver and kidneys contain large numbers of peroxisomes because these organs help to cleanse the blood. Peroxisomes are especially prevalent in cells that are synthesizing and breaking down fats. In the liver, some peroxisomes break down fats and others produce bile salts from cholesterol. Plant cells also have peroxisomes. In germinating seeds, they oxidize fatty acids into molecules that can be converted to sugars needed by the growing plant.

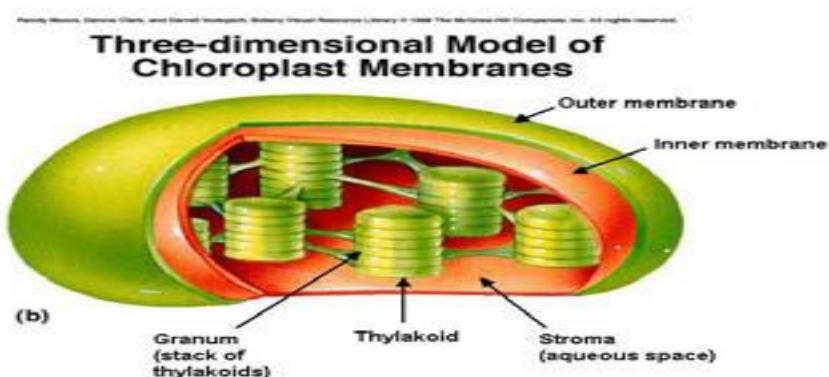
1.6.5.4 Vacuoles

A vacuole is a large membranous sac. A vesicle is smaller than a vacuole. Animal cells have vacuoles, but they are much more prominent in plant cells. Typically, plant cells have a large central vacuole so filled with a watery fluid that it gives added support to the cell.

Vacuoles store substances. Plant vacuoles contain water, sugars, and salts; and also pigments and toxic molecules. The vacuoles present in unicellular protozoans are quite specialized; they include contractile vacuoles for ridding the cell of excess water and digestive vacuoles for breaking down nutrients.

1.6.6 Energy Related Organelles

Chloroplasts and mitochondria are the two eukaryotic membranous organelles that specialize in converting energy to a form that can be used by the cell.


Chloroplasts use solar energy to synthesize carbohydrates through **photosynthesis**, and carbohydrate-derived products are broken down in mitochondria to produce energy in form of ATP.

1.6.6.1 Chloroplasts

Plant and algal cells contain chloroplasts, the organelles that allow them to produce their own organic food. Chloroplasts are about 4–6 μm in diameter and 1–5 μm in length; they belong to a group of organelles known as plastids.

A chloroplast is bounded by two membranes that enclose a fluid-filled space called the stroma. A membrane system within the stroma is organized into interconnected flattened sacs called thylakoids. The thylakoids are stacked up in structures called grana (singular; granum). There can be hundreds of grana within a single chloroplast.

Chlorophyll, which is located within the thylakoid membranes of grana, captures the solar energy needed to enable chloroplasts to produce carbohydrates. The stroma also contains DNA, ribosomes, and enzymes that synthesize carbohydrates from carbon dioxide and water.

1.6.6.2 Mitochondria

All eukaryotic cells, including those of plants and algae, contain mitochondria. Mitochondria are found scattered throughout the cytosol, and are relatively large organelles (next to the nucleus and chloroplasts). Most mitochondria are usually 0.5–1.0 μm in diameter and 2–5 μm in length. Like chloroplasts, they are bounded by a double membrane:

- i. The smooth outer membrane serves as a boundary between the mitochondria and the cytosol.

- ii. The inner membrane has many long folds, known as cristae, which greatly increase the surface area of the inner membrane, providing more space for ATP synthesis to occur.

Mitochondria are the sites of aerobic respiration, in which energy from organic compounds is transferred to ATP. For this reason, they are sometimes referred to as the '**powerhouse**' of the cell. In mitochondria, the inner fluid-filled space is called the matrix. The matrix contains DNA, ribosomes, and enzymes that break down carbohydrate products, releasing energy to be used for ATP production. Mitochondria are more numerous in cells that have a high energy requirement e.g. our muscle cells contain many mitochondria, as do liver, heart and sperm cells. They have their own DNA, and new mitochondria arise only when existing ones grow and divide. Thus, they are **semi-autonomous organelles**.

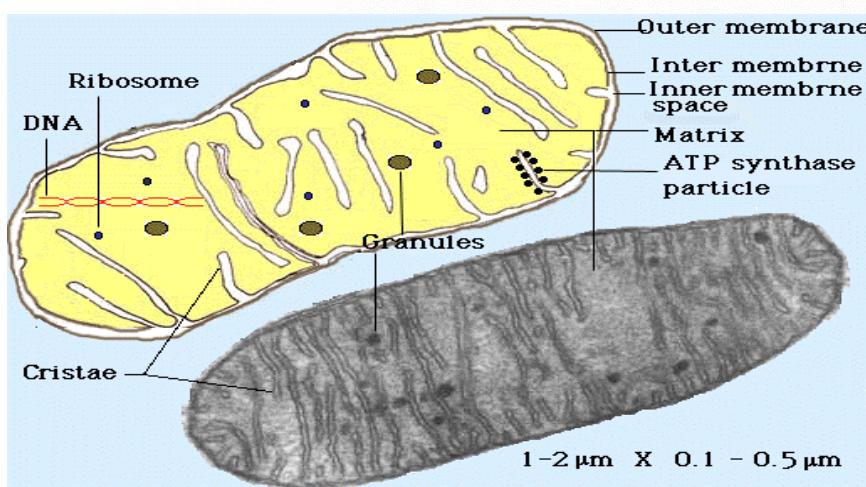


Fig: Mitochondrion structure. © IHW September 2005

1.6.7 The cytoskeleton

Just as the body depends on skeleton to maintain its shape and size, so a cell needs structures to maintain its shape and size. In animal cells, which have no cell wall, an internal framework called the cytoskeleton maintains the shape of the cell, and helps the cell to move. The cytoskeleton is made up of three types of fibers that constantly shrink and grow to meet the needs of the cell: microtubules, microfilaments, and actin filaments. Each type of fiber looks, feels, and functions differently.

Microtubules: consist of a strong protein called tubulin and they are the 'heavy lifters' of the cytoskeleton. They do the tough physical labor of separating duplicate chromosomes when cells copy themselves and serve as sturdy railway tracks on which countless molecules and

materials shuttle to and fro. They also hold the ER and Golgi neatly in stacks and form the main component of flagella and cilia.

Microtubules have three functions:

- a. They maintain the shape of the cell.
- b. They serve as tracks for organelles to move along within the cell.
- c. They form the centriole.

Microfilaments: are unusual because they vary greatly according to their location and function in the body. For example, some microfilaments form tough coverings, such as in nails, hair, and the outer layer of skin (not to mention animal claws and scales).

Others are found in nerve cells, muscle cells, the heart, and internal organs. In each of these tissues, the filaments are made of different proteins.

Actin filament: are made up of two chains of the protein actin twisted together.

Although actin filaments are the most brittle of the cytoskeletal fibers, they are also the most versatile in terms of the shapes they can take. They can gather together into bundles, web like networks, or even three-dimensional gels. They shorten or lengthen to allow cells to move and change shape. Together with a protein partner called myosin, actin filaments make possible the muscle contractions necessary for everything from action in sports field to the automatic beating of the heart.

MOTOR PROTEINS: Motor proteins associated with the cytoskeleton aids cell movements.

The major motor proteins include: myosin, kinesin, and dynein.

1.6.8 Centriole

This consists of two bundles of microtubules at right-angles to each other. Each bundle contains 9+0 pattern of tubes in a very characteristic arrangement. At the start of mitosis and meiosis, the centriole divides, and one half moves to each end of the cell, forming the spindle. The spindle fibers are later shortened to pull the chromosomes apart. Centrioles may be involved in microtubule formation and in the organization of cilia and flagella.

1.6.9 Cilia and flagella

Cilia and flagella are hairlike projections that can move either in an undulating fashion, like a whip, or stiffly, like an oar. They assist in cell movement. Cilia (singular; cilium) are short,

and numerous and hair-like. Flagella (singular; flagellum) are much longer, fewer, and are whip-like. Both are membrane bounded cylinders enclosing a matrix area.

In the matrix are nine microtubule doublets arranged in a circle around two central microtubules. Therefore, they have a 9 +2 pattern of microtubules. Protista commonly use cilia and flagella to move through water. Sperm cells use flagella (many, all fused together) to swim to the egg. The trachea and bronchi cells are lined with cilia, moving dust particles and bacteria away from the lungs.

1.7 Exterior Cell Surfaces in Animals

a. Extracellular Matrix (ECM)

This is a network of fibrous proteins and polysaccharides in close association with the cells that produced them. The two common protein in the extracellular matrix are collagen and Elastin. Collagen resists stretching, and Elastin gives resilience. Other Extracellular matrix proteins bind to receptors in a cell's plasma membrane, permitting communications between ECM and the cytoskeleton within the cytoplasm.

The Extracellular matrix in tissues vary greatly; they may be quite flexible as in cartilage, or rock solid as in bone.

b. Junctions between Cells

Three types of junctions are found between cells:

1. Adhesion junction
2. Tight junction
3. Gap junction.

The type of junction between two cells depend on whether or not the cells need to be able to exchange materials and if the cells need to be joined together tightly.

Adhesion junctions hold cells together in organs like heart, stomach, and bladder where tissues must stretch.

Tight junction joins adjacent cells closely. The cells of tissues that serve as barrier are held together by tight junctions, for example, urine stays within the kidney tubules because the cells of the tubules are joined by tight junction.

Gap junction is formed when two identical plasma membrane channels join. It allows cell communication.

Post-Test

1. Differentiate between Passive and Active transport across plasma membrane.
2. State the 3 main structural differences between plant and Animal cells.
3. Write a short note on the functions of Endoplasmic reticulum.
4. Briefly describe the organelles of Endomembrane system

Bibliography

- ❖ Dennis Taylor and Mary Jones. Foundation Biology
- ❖ Cooper G.M. & Hausnam R.E. The cell; A molecular approach, 4th Edition
- ❖ Cell structure and functions. <http://www.mhhe.com/maderap6>
- ❖ <http://www.mhhe.com/maderap6>
- ❖ IHW September 2005

LECTURE TWO

CONCEPT OF BIOLOGICAL DIVERSITY, CHARACTERISTICS AND CLASSIFICATION OF VIRUSES, MONERA, PROTISTA AND FUNGI

2.0 Introduction

Biodiversity is a term used to describe the great variety of living organisms on earth and their varied habitats. The great diversities of living organisms gave rise to the principles of biological classification, taxonomy and systematics

Objectives

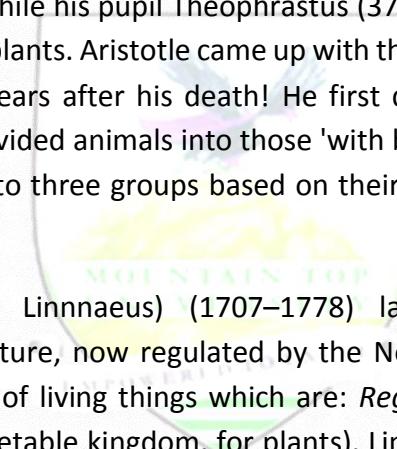
At the end of this lecture, students should be able to:

- i. Give the definition of important terms used in biodiversity
- ii. Give brief history, the goal and hierarchy of biological classification
- iii. State the characteristics and classification of viruses
- iv. State the characteristics and classification of kingdom monera
- v. State the two groups of kingdom protista
- vi. Explain the characteristics and classification of protozoan
- vii. Explain the characteristics and classification of algae
- viii. State the characteristics and classification of fungi

Pre-Test

- a) Define the following terms: taxonomy, classification, systematics
- b) State the major goals of biological classification
- c) Enumerate the hierarchy of biological classification from the simplest to the most advanced
- d) State 5 characteristics of viruses
- e) State 7 classification of viruses using David Baltimore system
- f) State 5 characteristics of kingdom monera
- g) State the two divisions of monera
- h) Write short note on the classification of monerans
- i) State 5 characteristics of kingdom protista
- j) State the two classes of protista
- k) State the classification of protozoan
- l) State the classifications of algae
- m) State 7 characteristics of fungi
- n) Explain the various classification of the kingdom fungi

CONTENT


2.1 The concept of biological diversity

2.1.1 DEFINITION OF TERMS

- Systematics: is the scientific study of biological diversity and its evolution.
- Taxonomy: is a subdivision of systematic and it is defined as the science of biological classification. It deals with naming of organisms and their characterization. Taxonomy describe the relationship between items while classification simply groups the items
- Classification: is the orderly arrangement of organisms into groups based on trait similarity.

2.1.2 Brief History of Biological Classification

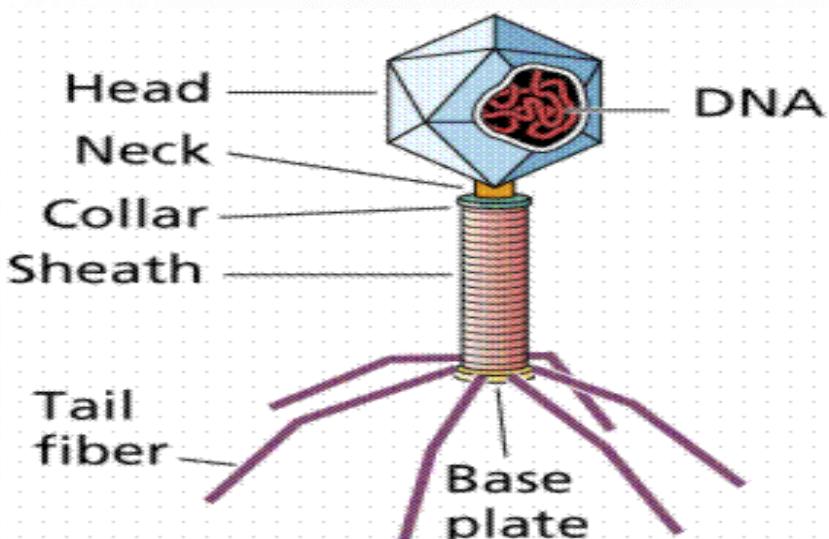
The classification of living things into animal and plant is an ancient one. Aristotle (384–322 BC) was a Greek philosopher who lived about 2400 years ago classified animal species in his book "History of Animals", while his pupil Theophrastus (371–287 BC) wrote a parallel work, the "Historia Plantarum" on plants. Aristotle came up with the following grouping system that was used for almost 2000 years after his death! He first divided all organisms into either animals or plants. He then divided animals into those 'with blood' and those 'without blood'. Lastly animals are divided into three groups based on their method of movement: walkers, flyers or swimmers.

Carl Linnaeus (or Carolus Linnaeus) (1707–1778) later laid the foundations for modern biological nomenclature, now regulated by the Nomenclature Codes, in 1735. He distinguished two kingdoms of living things which are: *Regnum Animale* (animal kingdom) and *Regnum Vegetable* (vegetable kingdom, for plants). Linnaeus later included minerals in his classification system, placing them in a third kingdom called: *Regnum Lapideum*. In biology, kingdom is the third highest taxonomic rank below domain. Kingdoms are divided into smaller groups called phyla.

2.1.3 Hierarchy of Biological Classification

The hierarchy of biological classification contains nine taxonomic ranks (including life) which are: life, domain, kingdom, phylum/division, class, order, family, genus, and species.

2.1.4 The Goals of Classification Systems


- The major goal of the biological classification systems in regular use today is:
- to reflect evolutionary relationships
- Evolutionary history has two important components:
- The phylogeny, which is the pattern of genetic linkages between ancestors and their descendants.
- The rate of evolution of traits among groups of organisms

2.1.5 Importance of Classification include the following:

- Classification systems provide relatively stable, unique, and unequivocal names for organisms
- It greatly improves our predictive powers
- It improves our ability to explain relationships among things
- It aids our memory

2.2 Characteristics and Classification of Viruses

This lecture focuses on characteristics and classification of viruses. Since virus cannot exist on its own, they normally infect other organisms such as bacteria. When a virus infect a bacteria, it is called bacteriophage.

Figure 2.1: Structure of bacteriophage

Source: Pinterest

2.2.1 Characteristics of Viruses

The following are some of the characteristics of viruses:

- They are enclosed in a protective envelope
- They have spikes, which helps them to attach to the host cell.
- They are non-cellular
- They do not respire, metabolize and do not grow but they do reproduce
- They contain a protein coat called the capsid
- They have a nucleic acid core containing DNA or RNA.
- Ribosomes and enzymes are absent, which are needed for metabolism
- They are considered both as living and non-living things, as viruses are inactive when they are present outside of host cells and are active inside the host cells. They make use of raw materials and enzymes of the host cell to reproduce and causes several infections.

2.2.2 Classification of viruses

- Virus Classification seeks to describe the diversity of viruses by naming and grouping them on the basis of their similarities.
- In 1962, André Lwoff, Robert Horne, and Paul Tournier were the first to develop a means of virus classification, which is based on the Carl Linnaean hierarchical system.
- Viruses were grouped according to their shared properties (not those of their hosts) and the type of nucleic acid forming their genomes. Later the International Committee on Taxonomy of Viruses (ICTV) was formed. Moreover, Nobel laurel biologist "David Baltimore" also classified viruses using viral mRNA synthesis.

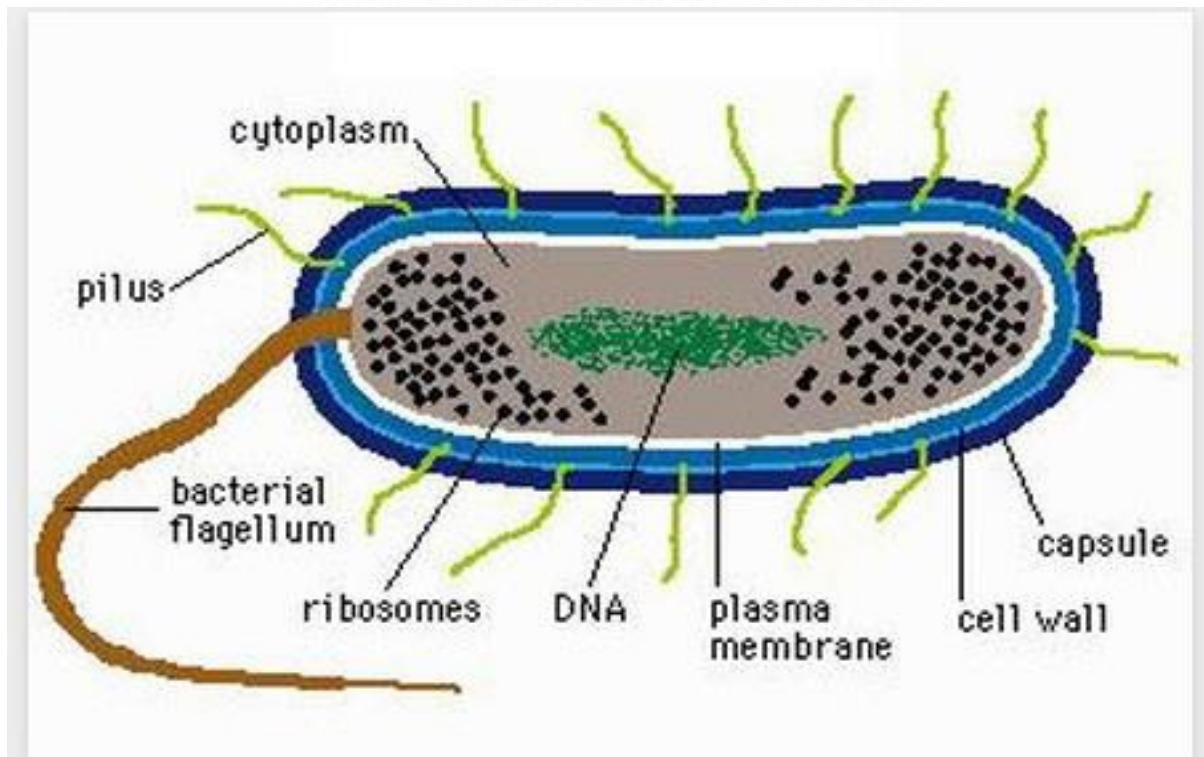
2.2.3 ICTV Classification

In accordance with ICTV taxonomic system, 7 orders have been established for the classification of viruses, they are:

- i. *Caudo-virales*
- ii. *Herpes-virales*
- iii. *Ligamen-virales*
- iv. *Mononega-virales*
- v. *Nido-virales*
- vi. *Picorna-virales*
- vii. *Tymo-virales*

2.2.4 Baltimore Classification

David Baltimore is a Nobel Prize-winning biologist who devised a classification system for viruses called: The Baltimore classification system.


His classification is based on the method of viral mRNA synthesis where he grouped all viruses into 7 classes, these are:

- **Class I:** Double-stranded DNA (dsDNA viruses) e.g. Adenoviruses, Poxviruses, Herpesviruses
- **Class II:** Single-stranded (+) sense DNA (ssDNA viruses (+ strand or "sense") DNA e.g. Parvoviruses.
- **Class III:** Double-stranded RNA (dsRNA viruses) e.g. Reoviruses, Birnaviruses
- **Class IV:** Single-stranded (+) sense RNA ((+) ssRNA viruses (+ strand or sense) RNA e.g. Picornaviruses, Togaviruses.
- **Class V:** Single-stranded (-) sense RNA ((-)ssRNA viruses (-strand or antisense) RNA e.g. Orthomyxoviruses, Rhabdoviruses
- **Class VI:** Single-stranded (+)sense RNA with DNA intermediate (ssRNA-RT viruses (+ strand or sense) RNA with DNA intermediate in life-cycle) e.g. Retroviruses
- **Class VII:** Double-stranded DNA with RNA intermediate (dsDNA-RT viruses) e.g. Hepadnaviruses

2.3 Characteristics and Classification of Monera

The Kingdom Monera includes organisms that are single-celled known as bacteria. The microorganisms in this kingdom are considered as the most ancient living forms on earth. The kingdom is divided into two groups

- *Archaeabacteria* and
- *Eubacteria*.
- All the organisms of this kingdom are prokaryotes.

Figure 2.2: Structure of a bacterial cell (a typical prokaryote)

Source: hubpages.com

2.3.1 General characteristics of the kingdom Monera are as follows:

- They are primitive organisms
- They are all unicellular organisms
- All organisms of the kingdom are prokaryotes and lack membrane bound nucleus
- They are present in both living and non-living environment
- Some can survive in harsh and extreme climatic conditions like in hot springs, acidic soils e.g. Archaea bacteria
- They possess DNA which is a double stranded structure, suspended in the cytoplasm of the organism referred to as nucleoid
- They possess a rigid cell wall

- Membrane bound cellular organelles like mitochondria, chloroplast, lysosome are absent
- They are ubiquitous in nature as they can be found in all including hot springs, under ice, in deep ocean floor, in deserts and on or inside the body of plants and animals.

2.3.2 Classification of Kingdom Monera

The classification of kingdom monera is categorized as following:

1. Classification based on habitat: Archaeabacteria, Eubacteria
2. Classification based on Shape: Bacteria can be classified into four groups based on shape: Spherical or round shaped bacteria (cocci); Rod-shaped (bacilli), comma-shaped bacteria (vibrio) and spiral shaped bacteria (spirilla)
3. Classification Based on Mode of Nutrition: Autotroph and heterotroph
4. Classification based on Gram's staining: Gram positive and gram negative. Gram's staining is a test on cell walls developed by Hans Christian Gram. This method helps to classify bacteria into:
 - *Gram Positive Bacteria* - The bacteria's cell wall in this category is made up of protein-sugar complex that takes on purple color during gram staining.
 - *Gram Negative Bacteria* - The gram negative bacteria has an extra layer of lipid on the outside of the cell wall and appear pink during the Gram staining procedure.

2.4 Characteristics and Classification of Protista

The term Protista was first used by Ernst Haeckel in the year 1886. Protista is a diverse group of eukaryotic organisms which can be unicellular, colonial or multicellular in nature which do not have specialized tissue organization. The simple cellular organization distinguishes the protists from other eukaryotes. In addition, all single celled organisms are placed under the kingdom protista.

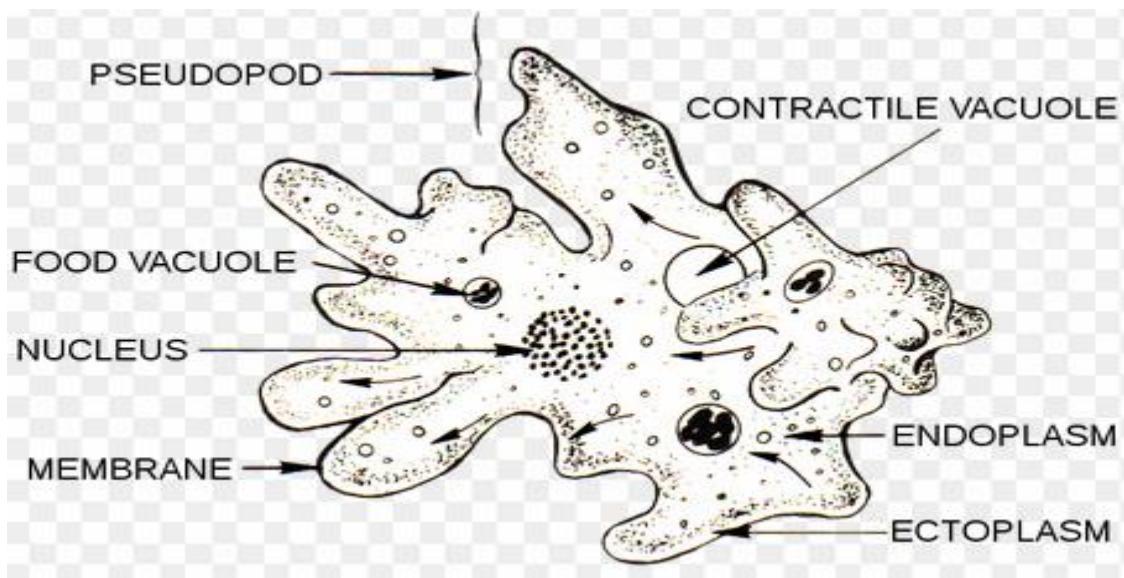
2.4.1 Characteristics of Kingdom Protista

- They are simple eukaryotic organisms.
- Most of the organisms are unicellular, some are colonial and some are multicellular like algae.
- Most of the protists live in water, some in moist soil or even the body of human and plants.
- They are eukaryotic, since they have a membrane bound nucleus and endo-membrane systems.
- They have mitochondria for cellular respiration and some have chloroplasts for photosynthesis.
- Nuclei of protists contain multiple DNA strands; the number of nucleotides is significantly less than complex eukaryotes.
- Their movement is often by flagella or cilia.

- Cellular respiration is primarily aerobic process, but some living in mud below ponds or in digestive tracts of animals are strict facultative anaerobes.
- They can be both heterotrophic or autotrophic in their mode of feeding.
- Flagellates are filter feeding, some protists feed by the process of endocytosis (formation of food vacuole by engulfing a bacteria and extending their cell membrane).
- In terms of reproduction, some species have complex life cycle involving multiple organisms. Example: *Plasmodium*. Some reproduce sexually and others asexually.
- They can reproduce by mitosis and some are capable of meiosis for sexual reproduction.
- They form cysts in adverse conditions.
- Some protists are pathogens of both animals and plants. Example: *Plasmodium falciparum* causes malaria in humans.
- Protists are major component of plankton.

Moreover, it should be noted that protists are multicellular organisms; they are not a plant, animal or fungus.

2.4.2 Classification of Kingdom Protista


Kingdom Protista are categorized into two taxons:

- Protozoans - animal-like single-celled organisms: They differ from animals; being unicellular while animals are multicellular.
- Algae - plant-like single or multi-celled organisms.

2.4.3 Protozoans (Animal-like Protists)

Protozoans are classified on the way they move into four categories:

- **Phylum Sarcodina** - move using pseudopod. Example are Amoeba, Foraminiferans.
- **Phylum Mastigophora (Zooflagellata)** - move using flagella. Examples are *Trypanosoma gambiense* which causes sleeping sickness in cattle and human and *Trichonympha* sp.
- **Phylum Ciliophora (Ciliates)** - move using cilia. Examples are Paramecium and Vorticella
- **Phylum Sporozoa** - They forms spores and hence the name sporozoa. All members of this phylum are non-motile and parasitic. Example is *Plasmodium* (the parasite that causes malaria in humans).

Figure 2.3: Structure of Amoeba (a typical example of protozoan)

Source: tutorvista

2.4.4 Algae (Plant-like Protists)

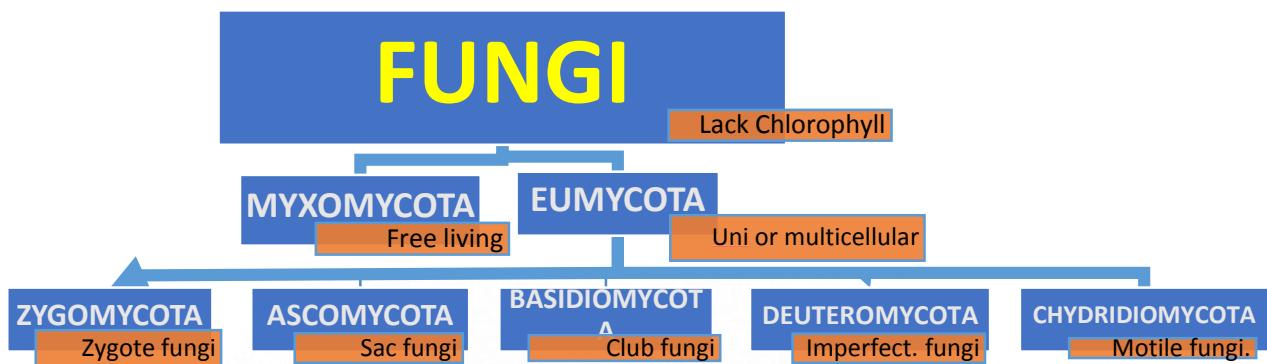
Plant-like protists have chlorophyll like that in plants. The green substances in their cells enable them to make food through photosynthesis.

They are classified as follows:

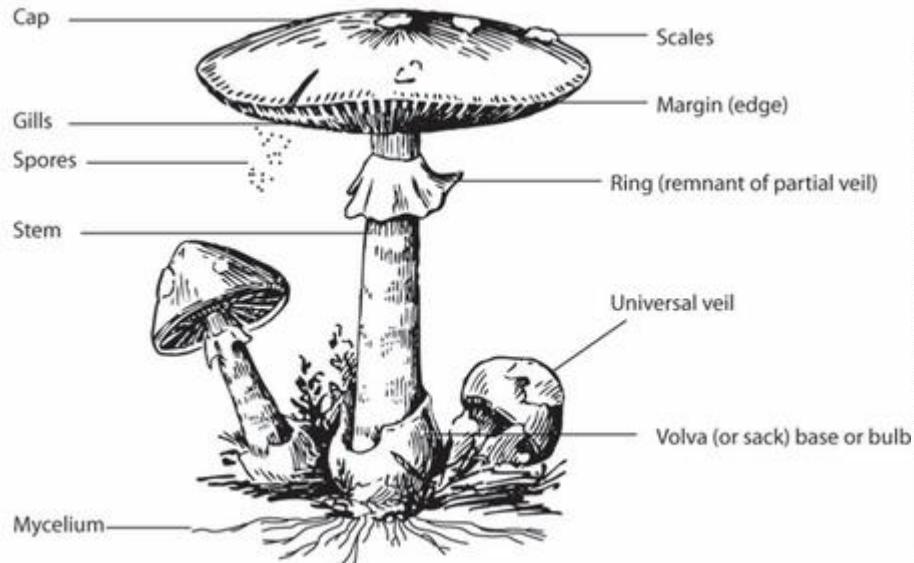
- i. **Phylum Chlorophyta (Green Algae):** Examples include Spirogyra, Ulva, Chlamydomonas, Volvox etc.
- ii. **Phylum Rhodophyta (Red Algae):** Examples include Nori and Gelidium which are used as food, in parts of Asia; Carragean and Agar are glue-like substances in red-algae. More examples are: Porphyra, Rotalgen.
- iii. **Phylum Phaeophyta (Brown Algae):** Examples include Sargassum (rockweed), Algin (a substance derived from some algae which is used in making ice cream, lotion and plastics). More examples are: Laminaria, Nereocystis
- iv. **Phylum Chrysophyta (Golden algae):** these are divided into 3 types:
 - a. Yellow-green algae
 - b. Golden-brown algae
 - c. Diatoms.
- v. **Phylum Pyrrrophyta (Fire Algae):** this is also called *Phylum Dino-flagellata* e.g. Ceratium, Gonyaulax.
- vi. **Fungus-like Protists:** such as Slime Molds and Water molds e.g. Saprolegnia

2.5 Characteristics and Classification of Fungi

Fungi are heterotrophic organisms which obtain their nutrients by absorption. The 'fruit' body of fungus is only seen, while the vegetative body of the fungus is a mycelium which is made up of tiny filaments called hyphae. More than 70,000 species of fungi have been identified. The organisms in kingdom fungi include: mushrooms, yeasts, molds, rusts, smuts, puffballs, truffles, morels, and molds. Mycology is a discipline of biology which deals with the study of fungi.


2.5.1 Characteristics of Kingdom Fungi

- Fungi are eukaryotic organisms.
- They are non-vascular organisms.
- They reproduce by means of spores and depending on the species and conditions, both sexual and asexual spores may be produced.
- They are typically non-motile except in a few groups
- Fungi exhibit the phenomenon of alteration of generation.
- The vegetative body of the fungi may be unicellular (e.g. yeast) or composed of microscopic threads called hyphae (e.g. mushroom).
- The structure of cell wall is similar to plants but chemically the fungi cell wall are composed of chitin.
- Fungi are heterotrophic organisms and carry out “Extracellular digestion” where fungi first digest the food outside their cells before ingestion. To accomplish this, fungi produce exo-enzymes.
- Fungi store their food as glycogen similar to animals.
- Biosynthesis of chitin occurs in fungi.
- The nuclei of the fungi are very small.
- During mitosis the nuclear envelope is not dissolved.
- Nutrition in fungi are either saprophytes, parasites or symbionts.
- Reproduction in fungi is both by sexual and asexual means.
- Sexual state is referred to as teleomorph while asexual state is referred to as anamorph.


2.5.2 Classification of Kingdom Fungi

Based on the spore case in which the spores are produced, fungi are classified into four divisions.

1. **Division Zygomycota (Zygote forming Fungi):** The spores are produced in round-shaped case called sporangium. These fungi are usually found on cheese, bread, and other decaying food. Example include: *Mucor*, *Rhizopus* (the bread mould) and *Albugo*.
2. **Division Chidridiomycota (motile fungi):** these are often called chytrids. They are unique among all fungi in having motile stages in their life cycles; no other fungi have this trait. These motile stages take the form of zoospores, single cells with a single posterior (at the rear) flagellum. These zoospores (sperm-like cells) require water, as such chytrids live in permanently or temporarily in aquatic habitats. E.g. *Rhizophidium*, *Olpidium*
3. **Division Ascomycota (Sac Fungi):** The sac-fungi produce spores in small cup-shaped sacs called asci, hence the name ascomycota. The mature sac fungi spores are known as ascospores. Example include: *Aspergillus*, *Claviceps*, *Neurospora*.
4. **Division Basidiomycota (Club Fungi):** the spores are borne on a club-shaped spore case called basidium. Basidiomycota include: mushrooms (*Agaricus*), puff-balls, smuts (*Ustilago*), rusts (*Puccinia*) and toadstools. In mushrooms the basidia.
5. **Division Deuteromycota (Imperfect Fungi):** These organisms are known as imperfect fungi because they lack sexual reproduction. They reproduce by asexual spores known as conidia. Most of the fungi causes diseases to humans like ringworm, athlete's foot. Economically important imperfect fungi are *Penicillium* and *Aspergillus*. Other examples are *Alternaria*, *Colletotrichum* and *Trichoderma*

Figure 2.4: Summary of the classifications of kingdom fungi

Figure 2.5: Structure of mushroom (a typical fungi)

Source: pinterest.com

Post-Test

- Write short note on the following terminologies: taxonomy, classification, systematics
- State the major goals of biological classification
- Enumerate the hierarchy of biological classification from the simplest to the most advanced
- State 4 importance of biological classification
- State 5 characteristics of viruses
- List the 7 orders used by ICTV for the classification of viruses

- g) State 7 classification of viruses using David Baltimore system
- h) State 5 characteristics of kingdom monera
- i) State the two division of monera
- j) Explain the classification of monerans
- k) State 10 characteristics of kingdom protista
- l) State the two classes of protista
- m) State the classification of protozoan
- n) State the classifications of algae
- o) State 10 characteristics of fungi
- p) Give the classifications of kingdom fungi
- q) Draw a well-labelled diagram of mushroom

Bibliography

- Adl, Sina M.; et al. (2005). "The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists", *Journal of Eukaryotic Microbiology* 52 (5): 399 –451
- biology-igcse.weebly.com/classification-of-living-organisms.html
- C. Linnaeus (1735). "Systemae Naturae, sive regna tria naturae, systematics proposita per classes, ordines, genera & species".
- Cavalier-Smith, T. (1998). "A revised six-kingdom system of life", *Biological Reviews* 73 (03): 203–66.
- Copeland, H. (1938). "The kingdoms of organisms". *Quarterly Review of Biology* 13: 383–420.
- https://en.wikibooks.org/.../Classification_of_Living_Things/
- <https://en.wikipedia.org/wiki/>
- <http://website.nbm-mnb.ca/mycologywebpages/NaturalHistoryOfFungi/Chytridiomycota.html>
- Webster J. and Weber R. W. S. 2007. *Introduction to Fungi*. Third Edition. Cambridge University Press, New York.
- Wikibooks.org
- www.softschools.com/science/biology/classification_of_living_things/

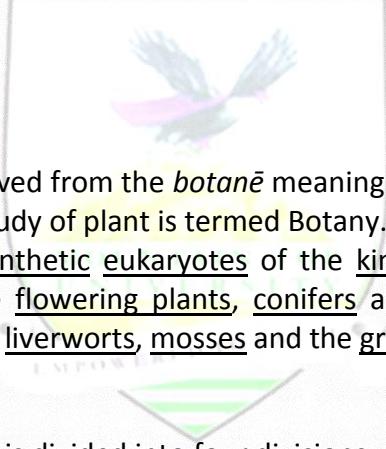
LECTURE 3

KINGDOM PLANTAE

This lecture focuses on the diversity, characteristics and classification of the kingdom Plantae (Bryophytes, Pteridophytes and Spermatophytes)

Objectives

At the end of this lecture, students should be able to:


1. Know the various divisions in the kingdom plantae
2. Be familiar with the general characteristics of each of the divisions in the kingdom
3. Be conversant with the classification of the members of the kingdom plantae

Pre-Test

1. What is Botany?
2. List the three examples of bryophyte
3. Mention the major four divisions in the kingdom plantae

CONTENT

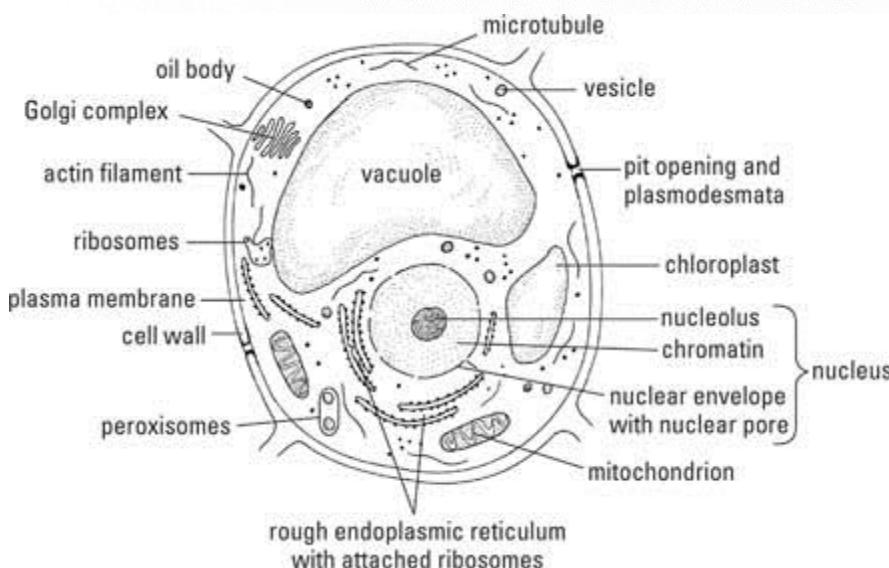
3.1 Definition

The word botany is derived from the *botanē* meaning pasture, grass, or fodder which means plant thus the study of plant is termed Botany. Plants are mainly multicellular, predominantly photosynthetic eukaryotes of the kingdom Plantae. They form the clade that includes the flowering plants, conifers and other gymnosperms, ferns, clubmosses, hornworts, liverworts, mosses and the green algae, and excludes the red and brown algae.

Kingdom plantae – This is divided into four divisions

- Bryophyta
- Pteridophyta
- Gymnosperms
- Angiosperms

Habitat


- Most of us are familiar with the plantae kingdom which consists of trees, bushes, vines, flowering plants, **ferns** and **moss** among other living **organisms**.
- Many plants are aqueous, meaning that they survive and thrive in water whether it be fresh or salt

Diversity

- They are cosmopolitan meaning they are found everywhere in our ecosystem
- It is estimated that there are between 300,000 and 500,000 species of higher plants (i.e flowering and cone bearing plants), of which approximately 250,000 have been identified or described

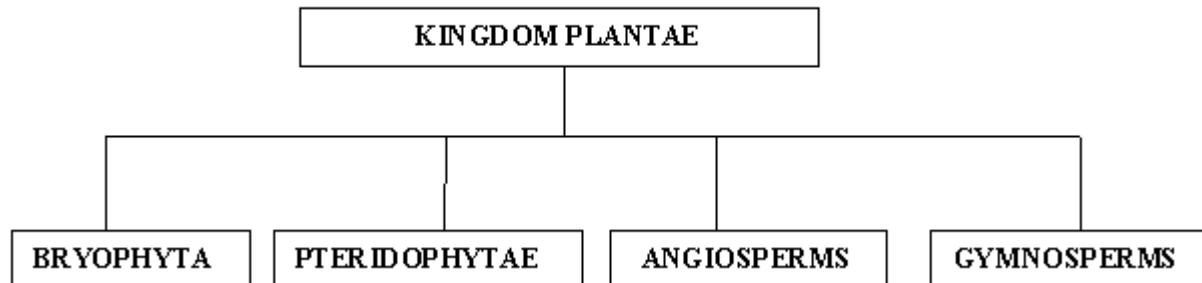
Speciation

- There are over 300,000 species of plants; common examples of plants include grasses, trees, and shrubs.

Diagram of a plant cell

<https://www.cliffsnotes.com/study-guides/biology/plant.../generalized-plant-cell>

3.2 The main characteristics of plant


- Most of the plants are eukaryotic and chlorophyll containing organisms.
- Cell walls of plant cells are comprised of cellulose.
- They have an ability to grow by cell division.
- In life cycle of plant cells, the interchanges occur from the embryos and are supported by other tissues and self produce.
- Plants have both organs and organ systems.
- They obtain their energy from sun through photosynthesis.
- Plants reproduce both by sexual and asexual.

- Plants develop a self defense mechanism to protect them from being destroyed by animals, fungi and other plants.
- Organisms within Kingdom Plantae are multicellular, eukaryotic and autotrophic.
- They lack motility.

3.3 General characteristics of plants

- They are Eukaryote
- Stationary (i.e do not move)
- Autotrophic i.e they synthesize their own food via photosynthesis
- Their life cycles are characterized by Alternation of Generation where a haploid Gametophyte alternates with a Diploid Sporophyte
Indeterminate growth i.e they don't stop growing their whole lives
- Their cells have cell walls composed mainly of cellulose
Their cells contain Chlorophyll contained in Chloroplasts
- Their cells usually have a large vacuoles Store carbohydrates as starch.

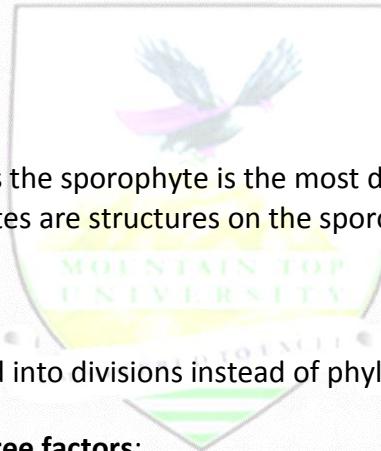
3.4 Difference between Bryophytes, Pteridophytes and spermatophytes

- The Kingdom Plantae contains about billion types of plants species and it was very difficult to identify different types of species.
- Many biologists contributed in classifying different plants species in to their separate kingdom.
- Based on their classification, plants are divided into the four main groups.

These classifications was based on

- The presence of vascular tissue.
- The absence of vascular tissue.
- The presence of seeds.
- The absence of seeds.

Vascular tissue and the seeds are mainly considered as they play a vital role in plant


- Vascular tissue helps in transporting substances (water, minerals and sugars) throughout the plant.

- Seeds are structures, which contains an embryo that helps in storing food.
- There are over 280,000 species of plants on Earth.
- They are estimated to have evolved from green algae 450-630 million years ago.
- The first plants to evolve were similar to mosses and reproduced using spores, an adaptation to being on land.
- Over time, selection favored plants that could tolerate dry land which lead to seed evolution.
- Plants with true seeds evolved around 390-320 million years ago.
- As selection began to favor plants with seeds a new adaptation was seen, flowers and fruits, around 130-200 million years ago.
- Some flowering plants have adapted to live back in the aquatic environment from whence they first evolved (aquatic angiosperms)

3.5 Life Cycle

Plants have a life cycle that consists of alternating phases. "Alternating of Generations"

- Sporophyte (2N)
- Gametophyte (1N)
 - In seeded plants the sporophyte is the most dominant form.
 - The gametophytes are structures on the sporophyte. (Ex. flowers)

3.6 Classification of plants

In botany, plants are classified into divisions instead of phyla.

The divisions are based on three factors:

- Vascularization
- Seed Production
- Flowering

3.7 Bryophyta

- **Bryophytes** are an informal group consisting of three divisions of non-vascular land plants (Embryophyta), the liverworts, hornworts and mosses.
- They are characteristically limited in size and prefer moist habitats although they can survive in drier environments.
- The bryophytes consist of about 20,000 plant species.
- Bryophytes produce enclosed reproductive structures (gametangia and sporangia), but they do not produce flowers or seeds.
- They reproduce via spores.

3.8 The defining features of bryophytes are:

- Their life cycles are dominated by the gametophyte stage
- Their sporophytes are unbranched

They do not have a true vascular tissue containing lignin (although some have specialized tissues for the transport of water)

3.9 Characteristics of bryophytes

- They are non-vascular land plants, which do not contain any conducting tissues and are often referred to as bryophytes.
- These plants are small, grow close to the ground and include mosses and liverworts.
- They are very small in structure and are considered as important members of our ecosystem.
- The reproduction process is carried in their spores.
- They are non-flowering plant and are found mainly growing on the ground, on other plants and on rocks.
- They play a vital role in preventing soil erosion.

Examples: Mosses, Liverworts and Hornworts.

3.10 Morphological characteristics of the gametophytes of the three groups of bryophytes:

	Liverworts	Mosses	Hornworts
Structure	Thalloid	Foliose	Thalloid
Symmetry	Dorsiventral	Radial	Dorsiventral
Rhizoids	Unicellular	Pluricellular	Unicellular
Chloroplasts/cell	Many	Many	One
Protonemata	Reduced	Present	Absent
Gametangia (antheridia and archegonia)	Superficial	Superficial	Immersed

3.11 Morphological characteristics of the sporophytes of the three groups of bryophytes:

	Liverworts	Mosses	Hornworts
Stomata	Absent	Present	Present
Structure	Small, without chlorophyll	Large, with chlorophyll	Large, with chlorophyll
Persistence	Ephemeral	Persistent	Persistent
Growth	Defined	Defined	Continuous
Seta	Present	Present	Absent

Capsule form	Simple	Differentiated (operculum, peristome)	Elongated
Maturation of spores	Simultaneous	Simultaneous	Graduate
Dispersion of spores	Elaters	Peristome teeth	Pseudo-elaters
Columella	Absent	Present	Present
Dehiscence	Longitudinal or irregular	Transverse	Longitudinal

3.12 **Uses of bryophytes**

Characteristics of bryophytes make them useful to the environment which are as follows:

- Bryophytes are used in pollution studies to indicate soil pollution (such as the presence of heavy metals), air pollution, and UV-B radiation.
- Gardens in Japan are designed with moss to create peaceful sanctuaries.
- Some bryophytes have been found to produce natural pesticides.
- The liverwort, *Plagiochila*, produces a chemical that is poisonous to mice.
- Other bryophytes produce chemicals that are antifeedants which protect them from being eaten by slugs.
- When *Phythium sphagnum* is sprinkled on the soil of germinating seeds, it inhibits growth of damping off fungus which would otherwise kill young seedlings.

3.13 **Habitat**

- Bryophytes exist in a wide variety of habitats.
- They can be found growing in a range of temperatures (cold arctic and in hot deserts), elevations (sea-level to alpine), and moisture (dry deserts to wet rainforests).
- Bryophytes can grow where vascularized plants cannot because they do not depend on roots for an uptake of nutrients from soil.
- Bryophytes can survive on rocks and bare soil.

3.14 **Life cycle**

- Bryophytes have life cycles with alternation of generations.
- In each cycle, a haploid gametophyte, each of whose cells contains a fixed number of unpaired chromosomes, alternates with a diploid sporophyte, whose cell contain two sets of paired chromosomes.

- Gametophytes produce haploid sperm and eggs which fuse to form diploid zygotes that grow into sporophytes.
- Sporophytes produce haploid spores by meiosis, that grow into gametophytes.

3.15 Classification and phylogeny

- Bryophytes are usually considered to be a paraphyletic group and not a monophyletic group, although some studies have produced contrary results.

3.16 Pteridophyta

- A Pteridophytes is a vascular plant (with xylem and phloem) that reproduces via spores
- The term is now used only informally to denote a fern (monilophytes) or lycophytes
- Pteridophytes produce neither flowers nor seeds.
- They are also referred to as cryptogams.
- These are not a monophyletic group because ferns and horsetails are more closely related to seed plants than to the lycophytes.

3.17 Features of Pteridophytes

- They are seedless vascular plants, which contain vascular tissues but do not produce seeds.
- They are involved in transportation of fluids.
- The reproduction process is carried by spores.

Examples: horsetails, ferns, club mosses, spike mosses, and quillwort's).

Description

Ferns are free-sporing vascular plants

They share a unique life cycle with independent gametophyte and sporophyte phases

They are frequently discussed together due to common characteristics, including vascular plant

3.18 Classification

Ferns account for nearly 90% of the extant diversity.

Classification published in the molecular phylogenetic era, considered the ferns as monilophytes, as follows:

- Division Tracheophyta (tracheophytes) - vascular plants

Sub division Euphylophytina (euphylophytes)

Infradivision Moniliformopses (**monilophytes**)

- Infradivision Spermatophyta - seed plants, 260,000 species
- Subdivision Lycopodiophyta- less than 1% of extant vascular plants

3.19 Subdivision

Pteridophytes consist of two separate but related classes, whose nomenclature has varied. Classes, subclasses and orders

- Lycopodiopsida (lycophytes)
 - Lycopodiidae (clubmosses)
 - Selaginellidae (spikemosses and quillworts)
- Polypodiopsida (ferns)
 - Equisetidae (horsetails, single genus *Equisetum*)
 - Ophioglossidae (Psilotidae)
 - Psilotales (One family, whisk ferns)
 - Ophioglossales (One family, grape ferns)
 - Marattiidae (six genera, marattiod ferns)
 - Polypodiidae (leptosporangiate ferns, largest subclass, seven orders)

3.20 Pteridophytes life cycle

- The life cycle of Pteridophytes involves alternation of generations.
- This means that a diploid generation (the sporophyte, which produces spores) is followed by a haploid generation (the gametophyte or prothallus, which produces gametes).
- Pteridophytes differ from mosses and seed plants in that both generations are independent and free-living, although the sporophyte is generally much larger and more conspicuous.

3.21 The sexuality of Pteridophytes gametophytes can be classified as follows:

- Dioicous: each individual gametophyte is either male (producing antheridia and hence sperm) or female (producing archegonia and hence egg cells).
- Monoecious: each individual gametophyte produces both antheridia and archegonia and can function both as a male and as a female.
 - Protandrous: the antheridia mature before the archegonia (male first, then female).
 - Protogynous: the archegonia mature before the antheridia (female first, then male).

Spermatophyte

The spermatophytes also known as phanerogams or phenogamae, comprises of those plants that produce seeds, hence the alternative name is called seed plants. They are a subset of the embryophytes or land plants. The term *phanerogams* or *phanerogamae* is derived from the Greek word *phanerós* meaning "visible", in contrast to the cryptogamae from Greek *kryptós* "hidden" These terms distinguished those plants with hidden sexual organs (cryptogam) from those with visible sexual organs (phanerogamae).

Description

The living spermatophytes form five groups, the first four of which were traditionally grouped as gymnosperms:

- cycads, a subtropical and tropical group of plants with a large crown of compound leaves and a stout trunk,
- Ginkgo, a single living species of tree,
- conifers, cone-bearing trees and shrubs,
- gnetophytes, woody plants in the genera *Ephedra*, *Gnetum*, and *Welwitschia*
- angiosperms, (or magnoliophyta) the flowering plants, a large group including many familiar plants in a wide variety of habitats.

Evolution

A whole genome duplication event in the ancestor of seed plants occurred about 319 million years ago. This gave rise to a series of evolutionary changes that resulted in the origin of seed plants.

A middle Devonian (385-million-year-old) precursor to seed plants from Belgium has been identified predating the earliest seed plants by about 20 million years.

Classification

Seed-bearing plants were traditionally divided into angiosperms, or flowering plants, and gymnosperms, which includes the gnetophytes, cycads, ginkgo, and conifers.

Other classifications group all the seed plants in a single division, with classes for the five groups:

- Division **Spermatophyta**
 - Cycadopsida, the cycads
 - Ginkgoopsida, the ginkgo
 - Pinopsida, the conifers
 - Gnetopsida, the gnetophytes
 - Magnoliopsida, the flowering plants, or Angiospermopsida

A more modern classification ranks these groups as separate divisions (sometimes under the **Superdivision Spermatophyta**):

- **Cycadophyta**, the cycads
- **Ginkgophyta**, the ginkgo
- **Pinophyta**, the conifers
- **Gnetophyta**, the gnetophytes
- **Magnoliophyta**, the flowering plants

3.22 Spermatophyta characteristics

Spermatophytes are plants that reproduce with seeds instead of spores.

- They are larger than spores.
- They are multicellular.
- They are produced by the fertilized gametes (ovules and pollen) of plants.
- They germinate more easily than spores because they do not require much moisture.
- They are spread by the plant itself, animals, or the wind.
- They can be naked or enclosed in the ovary of a flower/fruit.
- Two groups of seed producing plants angiosperms (enclosed) and gymnosperms (naked) are recognized in this division.

Angiosperm and Gymnosperm

Angiosperms are commonly known as flowering plants that can be clearly distinguished from gymnosperms by certain derived characteristics. Gymnosperms are known as the ancestors of flowering plants that were known to exist 140 million years ago. With the passing ages, flowering plants evolved with modifications in various organs, like flowers, leaves, stems, endosperm, etc., soon after which angiosperms and gymnosperms were classified and placed in different positions in the plant kingdom.

Similarities

They are capable of producing pollen for fertilization through a pollen tube. Gymnosperms mostly depend on wind pollination, and some angiosperms are also dependent on the same agent.

- The sporophyte of both these varieties is differentiated into root, stem, and leaves.
- Apart from primary growth, their stem also undergoes expansion by secondary growth.
- Like angiosperms, gymnosperms also have vessels and companion cells. The vascular system is common for the both of them, consisting of conjoint and vascular bundles (open and collateral).
- The ovules of both angiosperms and gymnosperms develop into seeds. Their mode of seed germination is epigeal, hypogea, or both.
- One distinct similarity is the reduced gametophytic phase of both plants.

- Polyembryony, a common feature of gymnosperms, is also prevalent in some angiosperms and a suspensor is formed during the embryo development phase.

Differences

Angiosperms are of a much more varied type than gymnosperms. They can be trees, herbs, and shrubs, while gymnosperms are mostly woody trees.

- The typical structure of flowering plants consisting of ovary, style, and stigma is absent in gymnosperms, is an important aspect of angiosperms.
- Angiosperms have companion cells and xylem vessels in them, but these features are only present in Gnetales, a particular class of gymnosperms.
- Gymnosperms have unisexual flowers, while the other group bear flowers that are mostly bisexual.
- The endosperm formed in gymnosperms is a haploid tissue, while it's triploid in angiosperms. This is because double fertilization and triple fusion are absent in the former category, as a result the endosperm is formed before fertilization; while in the latter, the endosperm is the product of a triple fusion.
- Occurrence of a free nuclear division is present in angiosperm, but is absent in the other type.
- Female gametophyte, known as archegonia, is clearly distinct in gymnosperms, whereas it is absent in angiosperms.
- In angiosperms, the pollen receptive structures are mostly ovules, so they do not have to depend on external agents for pollination; while gymnosperms rely on natural agents.

Examples of Gymnosperms

- Redwood
- Fir
- Cypress
- Juniper
- Yew
- Ephedra
- Ginkgo
- Spruce
- Welwitschia
- Conifers
- Cycads
- Ginkgophyta
- Gnetum
- Pine

Examples of Angiosperms

- Bluebells
- Cucumber
- Tomato
- Oranges
- Marigold
- Lemon
- Peapod
- Walnut
- Raspberry
- Strawberry

Post-Test

1. Mention 5 main characteristics of plant
2. Draw and label a generalized diagram of a plant cell
3. Complete the table below:

Structures	Liverwort	Hornwort	Mosses
Growth	Defined	Defined	
Seta		Present	Absent
Capsule form	Simple		Elongated
Maturation of spores		Simultaneous	
Dispersion of spores		Peristome teeth	
Columella	Absent		Present

Bibliography

<http://www.perspective.com/nature/plantae/>

<http://news.nationalgeographic.com/news/2012/02/120221-oldest-seeds-regenerated-plantscience/>

<https://www.cliffsnotes.com/study-guides/biology/plant.../generalized-plant-cell>

Kron, Kathleen A; Chase, Mark W. [Molecular systematics and seed plant phylogeny: a summary of a parsimony analysis of rbcL sequence data](#). pp. 243–252., in [Gibbs et al \(1995\)](#)

Gibbs, Adrian J.; Calisher, Charles H.; García-Arenal, Fernando, eds. (1995). [Molecular basis of virus evolution](#). Cambridge: Cambridge University Press. [ISBN 9780521022897](#).

[Soltis, D. E.; Soltis, P. S.; Zanis, M. J. \(1 October 2002\). "Phylogeny of seed plants based on evidence from eight genes". American Journal of Botany. 89 \(10\): 1670–1681. doi:10.3732/ajb.89.10.1670. PMID 21665594](#)

LECTURE 4 - INVERTEBRATES

4.0 Introduction

This lecture focuses on the diversity, characteristics and classification of the major phyla of invertebrates. The phyla to be studied are the phylum Porifera, Cnidaria, Platyhelminthes, Nematoda, Annelida, Arthropoda, Mollusca and Echinodermata.

Objectives

At the end of this lecture, students should be able to:

4. Identify some species belonging to each phyla.
5. State the general characteristics of each phylum.
6. Classify members of each phylum according to taxonomy.

Pre-Test

4. What are invertebrates?
5. Mention the 8 major phyla of invertebrates.
6. State two physical characteristics of each phylum

CONTENT

4.1 Background

The invertebrates constitute about 90 per cent of the known animals which are over a million.

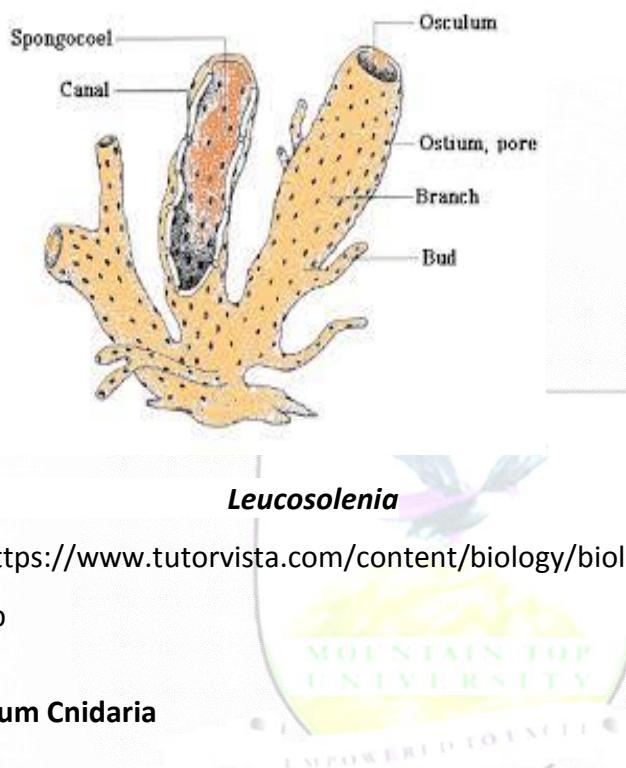
Each group of invertebrates has certain structural peculiarities, a special terminology and a distinct classification. There are about 30 invertebrate phyla which are characterized by a unity of basic structural pattern in each of them. Members of individual phylum are also related by common ancestry. Evolutionary studies have confirmed that all the members of an individual phylum have been derived directly or indirectly from a common primitive ancestral type. Although, there are 30 invertebrate phyla, there are eight major phyla namely

- Porifera (sponges)
- Cnidaria (Coelenterata)
- Platyhelminthes (flatworms)
- Nematoda (roundworms)
- Annelida (segmented worms)
- Arthropoda (arthropods)
- Mollusca (molluscs)
- Echinodermata (echinoderms)

4.2 Phylum Porifera

Porifera, including sponges are most primitive of multicellular animals. They are abundant in reef ecosystems and are somehow protected from predators. E.g. *Sycon*, *Euspongia*, *Hyalonema*, *Spongilla*, *Leucosolenia*

Characteristics


1. They are aquatic and mostly marine except for a single family of freshwater species.
2. They are sessile, plant-like animals fixed to some submerged solid rock or shell and are incapable of any movement. They however have a free swimming larva.
3. They are cylindrical, branching, vase-like or globular in shape.
4. They are asymmetrical.
5. The body is perforated by pores, the ostia through which water enters the body and one or more large openings, the oscula by which water passes out.
6. They are diploblastic animals. The body consist of outer ectoderm and inner endoderm with an intermediate layer of mesenchyme.
7. Though sponges are multicellular animals, their cells do not form organised tissues.
8. The interior space of the body is either hollow or permeated by numerous canals lined with choanocytes. Choanocytes are flagellated cells lining the inside of the body that generate current, trap and phagocytize food particles. The interior space of sponge body is called spongocoel.
9. Characteristic skeleton consist of either fine flexible sponging fibres, siliceous spicules or calcareous spicules.
10. They are filter feeders. Mouth is absent, digestion intracellular;
11. Excretory and respiratory organs absent.
12. The nervous and sensory cells are probably not differentiated.
13. They have great regenerative power due to their cells being totipotent (developmentally flexible) enabling them to become any type of cell at any point in the sponge's development.
14. The organization of sponges is grouped into three main types; viz., ascon type, sycon type and leuconoid type due to simplicity in some forms and complexity in others.
15. Sponges are monoecious reproducing both by asexual and sexual methods. Asexual reproduction occurs by budding.

Classifications

Class Calcarea (chalk sponges) with calcareous spicules.

Class Hexactinellida (glass sponges) with siliceous spicules.

Class Demospongiae (horn sponges) with a skeleton of spongin or none.

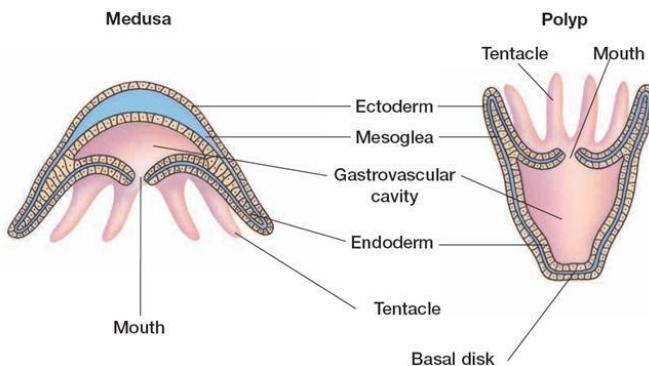
Source: <https://www.tutorvista.com/content/biology/biology-iii/animal-kingdom/phylum-porifera.php>

4.3 Phylum Cnidaria

Phylum Cnidaria is characterized by cylindrical (polyp) or umbrella (medusa) like animals. They are distinguished from sponges in being tissue animals that have a distinct digestive cavity. Many cnidarians have intracellular algae living within them in a mutualistic symbiotic relationship.

Characteristics

1. They are multicellular animals with tissue grade of organization.
2. They live in marine habitats except for few freshwater forms like *Hydra*.
3. They are sedentary or free-swimming and solitary or colonial.
4. Individuals are radially symmetrical with a central gastrovascular cavity or coelenteron communicating to the exterior by the mouth.
5. They are diploblastic. Their body wall is made of 2 cell layers called the ectoderm and endoderm. The ectoderm is the outside layer while the endoderm is found on the inside layer. These two are held together by an intermediate layer of non-cellular gelatinous mesogloea.


6. They are acoelomate animals because they do not possess a second body cavity, the coelom.
7. Their mouth is surrounded by short and slender tentacles in one or more whorls.
8. The tentacles are for capturing food and are also armed with stinging cells (cnidae or nematocysts) for the purpose of defence and prey capture.
9. Cnidarians have two basic body plans: polyp and medusa. Some only have the polyp stage, some have only the medusa stage, and others have both. The polyp is sessile and attaches to substrate by the aboral end (i.e. the end away from the mouth). The medusa ("jellyfish") is a floating form, and looks like an upside-down version of the polyp.
10. The digestive system is incomplete which means that coelenterates have just one opening to the digestive cavity. This serves as both mouth and anus.
11. No head or centralized nervous system but they have a 'nerve net' which consist of one or more networks of nerve cells and neuritis located in the ectoderm and endoderm.
12. No specialized organs for gas exchange, excretion, or circulation.
13. The life cycle alternates between an asexual polyp stage and a sexual medusa stage called alternation of generation or metagenesis.
14. They have a great regenerative power.
15. Reproduction is both by asexual and sexual methods.

Classifications

Class Hydrozoa – hydras and Portuguese man-of-war

Class Scyphozoa – jellyfish. The medusa stage is dominant and the polyp stage often is reduced.

Class Anthozoa – sea anemones and most corals. No medusa stage, so sexual reproduction occurs in the polyp stage in this group. The polyp also can reproduce asexually, which is how individual 'corals' grow.

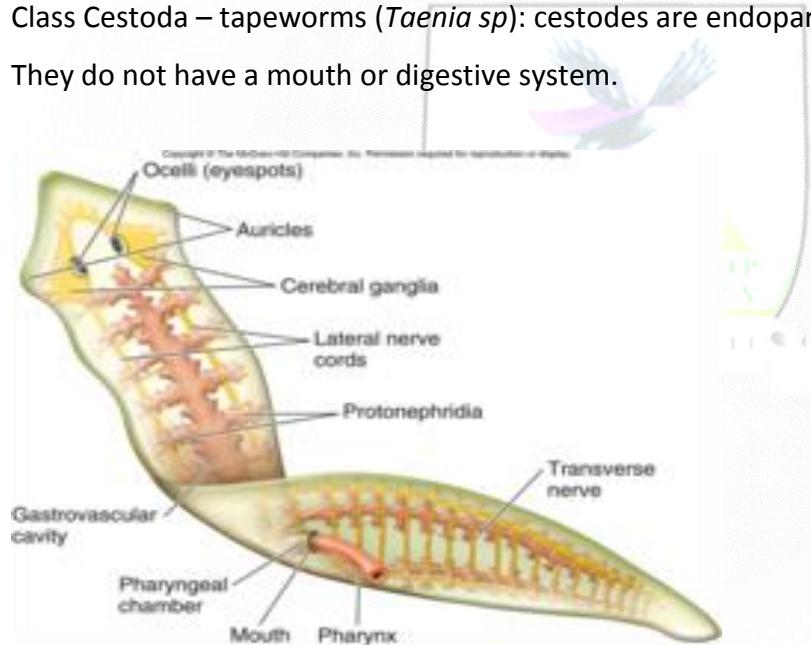
Source: <http://mesosyn.com/animals3.html>

4.4 Phylum Platyhelminthes

The name means flatworms. Most members of this phylum are parasitic (flukes and tapeworms), but some are free-living (e.g. planaria). They are more advanced than coelenterates because their tissues are organised into organs.

Characteristics

1. Animals in this phylum are bilaterally symmetrical and dorsoventrally flattened, acoelomate, triploblastic worms.
2. Body shape generally worm-like but varies from moderately elongated flattened shape to long flat ribbons and leaf-like.
3. Majority of flatworms are white, colourless, some derive colour from the ingested food, while free-living forms are brown, grey, black or brilliantly coloured.
4. Flatworms have a definite head and tail region.
5. Ventral surface bearing mouth and genital pore is well marked in turbellarians but is less marked in trematodes and cestodes.
6. Presence of great variety of adhesive secretions, organs of attachment and adhesion (e.g. hooks and suckers).
7. Body is covered with a partly ciliated epidermis while in parasitic trematodes and cestodes, epidermis is lacking and the body is covered with cuticle.
8. Exo- and endoskeleton are completely absent.
9. Body space between the various organs is filled with a mesenchyme usually called parenchyma.
10. Digestive system is totally absent in *Acoela* and tapeworms but in other flatworms it consists of mouth, pharynx and blind intestine (anus absent).


11. Flatworms have no circulatory or respiratory systems.
12. They do have simple excretory/osmoregulatory structures (single or paired protonephridia flame cells or bulbs).
13. They have a simple anterior 'brain' and a simple ladder-like nervous system.
14. Platyhelminthes are hermaphroditic, and the parasitic species often have very complex reproductive (life) cycles.
15. Flatworms are either free-living or ecto- or endocommensals or parasites.

Classifications

Class Turbellaria – *Planaria*

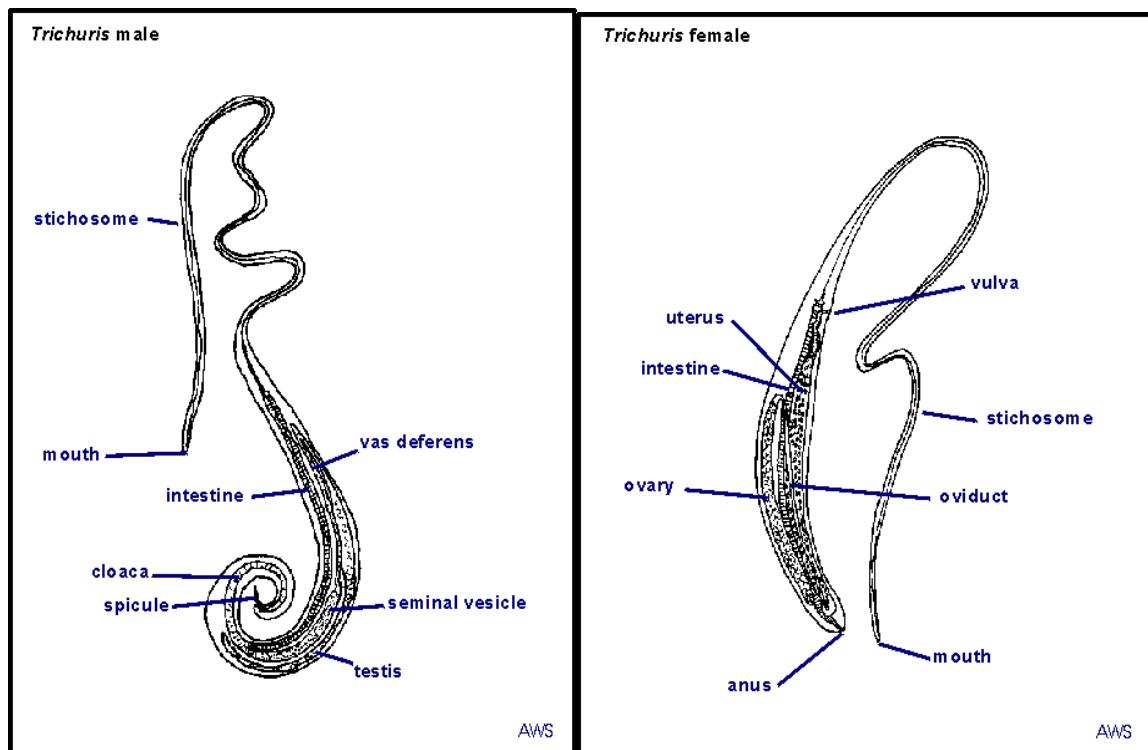
Class Trematoda – parasitic flukes, e.g. liver fluke (*Fasciola sp*) and the human blood fluke, *Schistosoma*

Class Cestoda – tapeworms (*Taenia sp*): cestodes are endoparasitic in the gut of vertebrates. They do not have a mouth or digestive system.

Diagram of Planaria

Source: <http://hwsciencesummer.blogspot.com.ng/2012/07/hw-12712.html>

4.5 Nematoda


This consist of the roundworms. They are widespread and of great medical and economic importance. They are parasites of humans and crops. Nematodes can be free-living or parasitic.

Characteristics

1. They are bilaterally symmetrical, unsegmented worms.
2. Triploblastic and pseudocoelomate animals with organ-system grade of body organization.
3. The body is usually worm-like cylindrical or flattened.
4. Their cylindrical bodies are tapered at both ends and are covered by a protective cuticle. Cilia is absent.
5. The alimentary canal is straight and complete with mouth and anus, pharynx muscular and highly specialized.
6. They have a unique excretory system but they lack special circulatory or respiratory structures.
7. Nervous system is simple and consists of a circumenteric nerve ring having anterior and posterior longitudinal nerves.
8. Sense organs are in the form of pits, papillae, bristles and eye spots.
9. The sexes are separate i.e. dioecious and reproductive organs relatively simple.
10. They are heterogeneous group inhabiting aquatic and terrestrial environment; many are well known parasites.

Classifications

- Class Chromadorea – hookworm, Guinea worm, *Wuchereria bancrofti*, *Loa loa*
- Class Enoplea – *Mermis*, *Trichinella spiralis*, whip worm, roundworms

Diagram of *Trichuris trichiura*

Source: <http://www2.biology.ualberta.ca/parasites/ParPub/diagram/comp/aphas04b.htm>

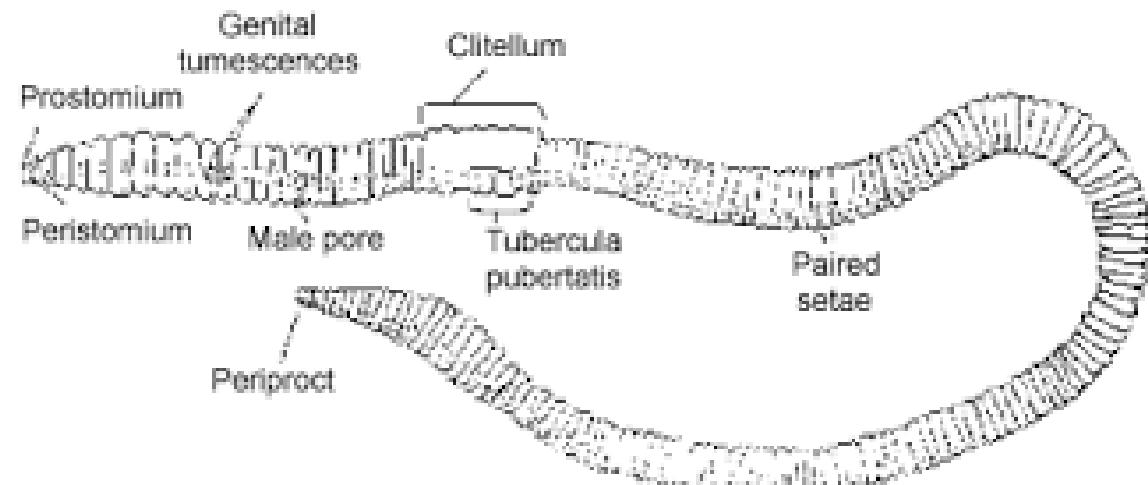
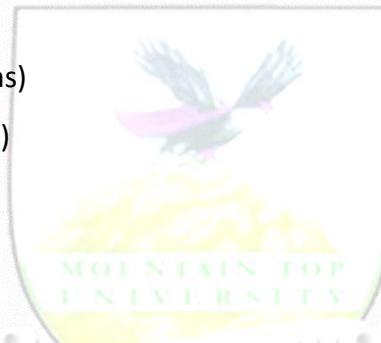
4.6 Annelida

Annelida are elongated, cylindrical, metamerically segmented animals. This consist of earthworms, leeches and various marine worms. They can be free living, parasitic, mutualistic, or commensalistic. Major advances of this phylum include the true coelom, segmentation, possession of inner layer of longitudinal muscles and outer layer of circular muscles, closed circulatory system and, for most, a more advanced excretory system (metanephridia).

Characteristics

1. Annelida are mostly aquatic; marine or freshwater, some terrestrial, burrowing or living in tubes.
2. Triploblastic, bilaterally symmetrical, elongated and vermiform.
3. Body is metamerically segmented.
4. Organ-system grade of body organisation.
5. Outer covering of the body is cuticle secreted by the underlying epidermis.
6. Body wall is contractile, consisting of an outer epidermis, circular and longitudinal muscles.
7. Possess a true coelom.

8. Their locomotive organs are segmentally arranged paired setae or chaetae in most cases.
9. Segmented worms have a complete digestive system and this set-up is often referred to as a tube-within-a-tube body plan.
10. Respiration occurs through general body surface.
11. They have a complete circulatory system and a well-developed nervous system.
12. Most of them have a more advanced excretory system (metanephridia).
13. They are usually hermaphrodites. Some may have separate sexes. Asexual reproduction also occurs in some forms.
14. A free-swimming trocophore larval stage is characteristic in case of indirect development, while in others this stage is passed during development.



Classifications

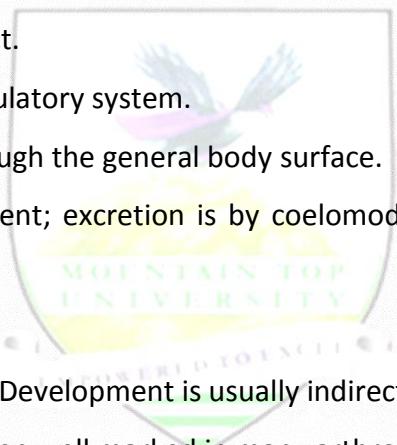
Class Polychaeta (marine worms)

Class Oligochaeta (earthworms)

Class Hirudinea (leeches)

Class Archiannelida

Diagram of earthworm


Source: <http://passscience.blogspot.com.ng/2010/09/earthworm.html>

4.7 Phylum Arthropoda

Arthropods are found in all environments. This means jointed feet. This phylum consists of spiders, ticks, mites, insects, lobsters, crabs, and shrimps, and is the largest of all the phyla. This phylum includes the extinct trilobites.

Characteristics

1. Triploblastic, bilaterally symmetrical and metamerically segmented animals.
2. Body is covered with a thick chitinous cuticle forming an exoskeleton. This prevents water loss allowing them to live successfully on land.
3. Arthropods have a segmented body with paired lateral and jointed appendages that provide excellent movement for walking, swimming, flying, biting etc.
4. Body cavity is haemocoel. The coelom is generally reduced to portions of the reproductive and excretory systems.
5. Complete digestive tract.
6. They have an open circulatory system.
7. Respiration occurs through the general body surface.
8. True nephridia are absent; excretion is by coelomoducts or Malpighian tubules or green or coxal glands.
9. The sexes are separate.
10. Fertilisation is internal. Development is usually indirect through larval stages.
11. Parental care is also often well marked in many arthropods.

Classifications

The major subphyla and classes include

Subphylum Trilobitomorpha

Subphylum Chelicerata – They have clawlike feeding appendages. They lack antennae and usually have simple eyes.

- Class Merostomata (horse shoe crabs)
- Class Arachnida (mites, scorpions, spiders, ticks)
- Class Pycnogonida (sea spiders)

Subphylum Mandibulata - have two pairs of antennae and branched (biramous) appendages.

- Class Crustacea
- Class Chilopoda (centipedes)

- Class Symphyla
- Class Pauropoda
- Class Diplopoda (millipedes)
- Class Insecta

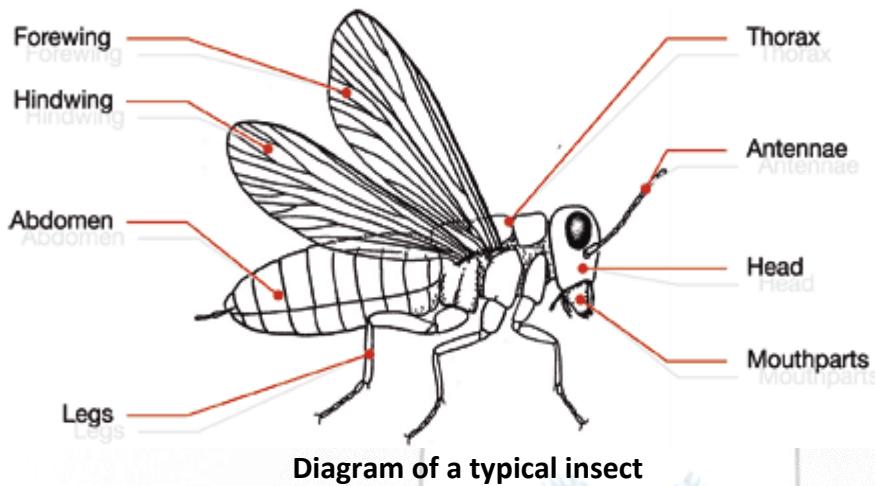


Diagram of a typical insect

Source:

<http://www.sciencecentre.qm.qld.gov.au/Find+out+about/Animals+of+Queensland/Insects#.WrzX74jwZPY>

4.8 Phylum Mollusca

Mollusca means soft. These comprise the second largest phylum of invertebrates in terms of number of species. They appear to be a heterogeneous group with great diversity of form, but all of them are built on the same fundamental plan. This phylum consists of snails, slugs, bivalves, chitons, squids, octopus, and many others.

Characteristics

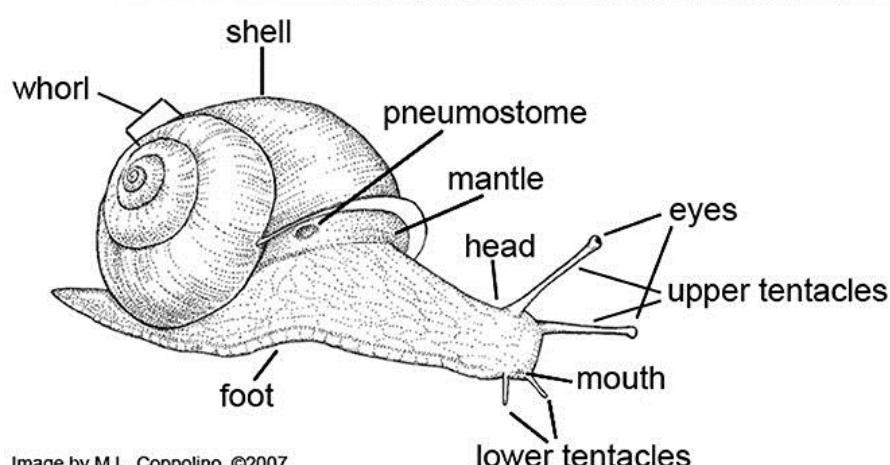
1. Molluscs are aquatic, mostly marine with few freshwater and some terrestrial forms.
2. The body is soft, unsegmented, bilaterally symmetrical and consists of head, foot, mantle and visceral mass.
3. The body is covered with one layered often ciliated epidermis.
4. Their body is protected by an exoskeletal calcareous shell secreted by the mantle.
5. Molluscs have a soft, unsegmented body and often move with a strong muscular foot on its ventral surface.
6. The visceral mass contains the vital organs of the body in a compact form taking the form of a dome.

7. They are coelomates but this has been greatly reduced. The main body cavity is a haemocoel.
8. The gut is complete with marked regional specialization.
9. Molluscs are well known for their tongue-like organ called the radula which has many rows of teeth and is used to scrape food from the surface of plants and rocks.
10. Excretory system consists of a pair of metanephridia.
11. They possess circulatory system, respiratory organs and nervous system.
12. Their sexes are separate (dioecious) but some are hermaphroditic.
13. Fertilisation is external or internal.
14. Many molluscan life cycles include a trochophore stage called veliger larva.

Classifications

Class Aplacophora

Class Polyplacophora (chitons)


Class Monoplacophora

Class Gastropoda (snails, slugs, nudibranchs)

Class Scaphopoda

Class Pelecypoda

Class Cephalopoda (squids, octopuses, chambered nautiluses)

Diagram of a snail

Source: <http://www.thesnailwrangler.com/education/anatomy/>

4.9 Echinodermata

This means spiny skin. Echinoderms are mostly sessile or very slow moving animals. They are exclusively marine animals living on the shore but mostly on the bottom of the sea. Examples are *Ascarias* (star fish), *Echinus* (sea urchin), *Antedon* (Sea lily), *Cucumaria* (sea cucumber).

Characteristics

- They are all marine. They occur in all seas from the intertidal zone to the great depths.
- As adults, they are triploblastic, coelomate and radially symmetrical, but in the larval stage, they are bilaterally symmetrical.
- Echinoderms have an internal, limy skeleton and a spiny outside surface or skin. These structures give both support and protection.
- Body wall consists of an outer epidermis, a middle dermis and an inner lining of peritoneum.
- They are unique in that they have a water vascular system composed of a system of fluid-filled canals. These canals branch into the tube feet, which function in feeding, locomotion, and gas exchange.
- The digestive system is complete.
- Circulatory or haemal or blood lacunar system is typically present.
- They lack an excretory system.
- Sense organs are poorly developed.
- Few are sessile.
- Sexes are separate with few exceptions.
- Reproduction is usually sexual but few reproduce asexually or by regeneration.
- Fertilisation is external.

Classifications

Subphylum Pelmatozoa

- Class Crinoidea (sea lilies)

Subphylum Eleutherozoa

- Class Holothuroidea (sea cucumbers)
- Class Echinoidea (sea urchins, sand dollars)
- Class Asteroidea (sea stars or star fish)

➤ Class Ophiuroidea (brittle stars)

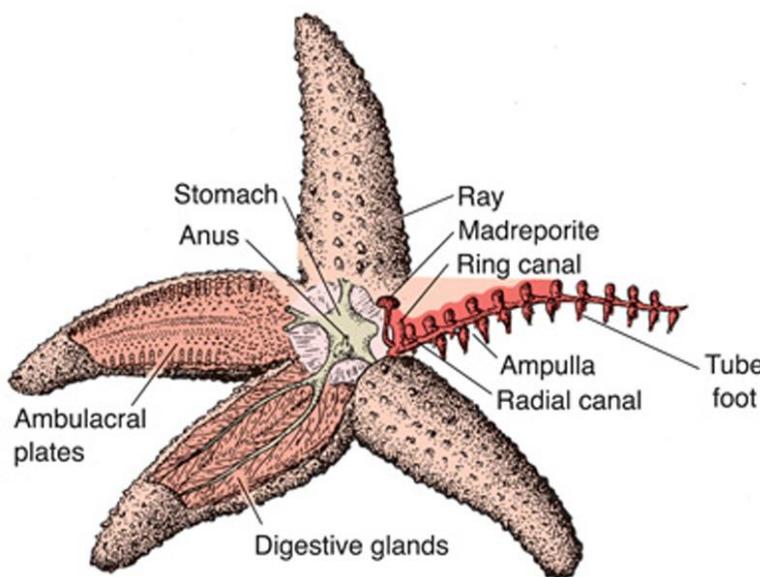


Diagram of a star fish, *Asterias rubens*

Source: <http://gotmuscle.weebly.com/echinodermata.html>

Post-Test

4. Mention the unique body plans peculiar to phylum Cnidaria
5. Complete the table below:

Phylum	Cellular organisation	Coelom	Body symmetry	Reproduction	Distinguishing features
Porifera				Sexual and asexual; usually haemaphrodites	Aquatic, adults non-motile, filter-feeders; possess pore and collar cells
Cnidaria		None		Budding and sexual; individuals are haemaphrodites	
Platyhelminthes	Organs		Bilateral		Flat body with definite head and tail
Nematoda		Pseudo-coelom		Sexual; separate male and female individuals	
Annelida	Organ Systems				Cylindrical segmented body
Molluscs		Coelom		Sexual; separate male and female individuals	
Arthropoda		Coelom	Bilateral		
Echinodermata	Organ Systems				Spiny skeleton; system of water canals; tube feet

Bibliography

N. P. O. Green, G. W. Stout and D. J. Taylor (2010). Biological Science 1 & 2. Third Edition. Cambridge University Press, UK. 984p

S.T. Ramalingam (2013). Modern Biology. Sixth Edition. Africana First Publishers Plc, Nigeria. 573p

LECTURE 5

PHYLUM CHORDATA

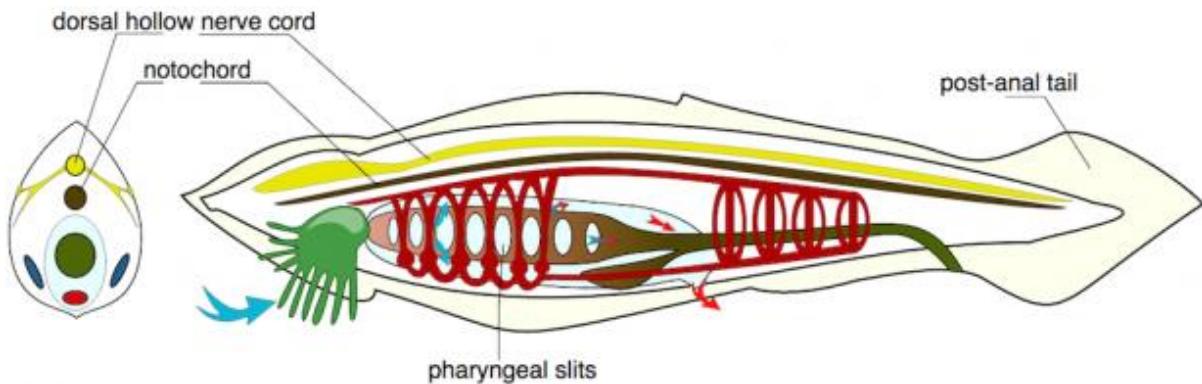
5.0 Introduction

This lecture focusses on the diversity, characteristics and classification of the various classes in the phylum chordate. The classes to be study include Urochordata, Cephalochordata, Agnatha, Chondrichtyes, Osteichthyes, Amphibia, Reptilia, Aves and Mammalia.

Objectives

At the end of this lecture, students should be able to:

7. Know the various classes in the phylum chordata
8. Be familiar with the general characteristics of each of the classes in the phylum
9. Be conversant with the classification of the members of the phylum chordata


Pre-Test

7. What are chordates?
8. What are vertebrates?
9. In what way are chordates and vertebrates related?

CONTENT

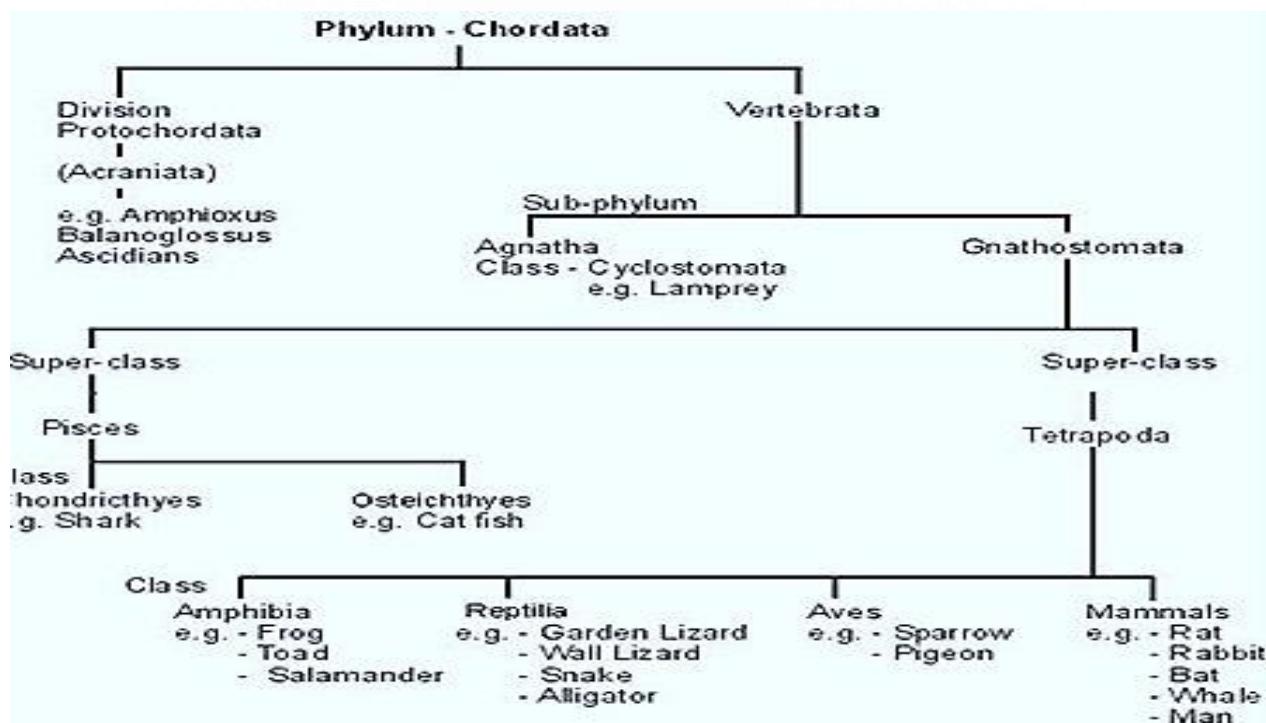
5.1 Definition

- The word Chordata is derived from the possession of the notochord
- Notochord - This can be divided into two words:
 - Noto - Back
 - Chorda - Cord
- The notochord is a structure possessed by all members of the phylum at one stage of its development.
- It may be in the larval or the embryonic stage or it may persist throughout life.
- **Habit**
 - Chordates are mostly free living and none is strictly parasitic
- **Size and habitat**
 - Largest animals in existence.
 - They are ecologically the most adaptable of organic forms and are able to occupy most kinds of habitat (land, water or air from the pole to equator).
- **Diversity**
 - The phylum includes animals familiar to most people
 - Human beings are members and share with other chordates, the characteristics from which the phylum derives its name (Notochord)
 - They exhibit an astonishing diversity in form, physiology and habit. The phylum includes such apparently unrelated animals such as sea squirts and man.
- **Speciation**
 - There are some 65,000 living chordates besides the fossil remains of many extinct forms.

Diagram of a generalized chordate

Source: <https://manoa.hawaii.edu/exploringourfluidearth/biological/invertebrates/phylum-chordata>

5.2 The main chordate characters


- These are the distinctive features that set chordates apart from all other phyla.
- These characters are always found at some embryonic stage although they may be altered, they may disappear in later stages of the life cycle.
- They are:
- Possession of Notochord
- Possession of hollow dorsal nerve chord
- Possession of pharyngeal slit/pouches
- Possession of post anal tail
- Possession of endostyle

5.3 General characters of chordates

- Well represented in marine, fresh water and terrestrial habitats.
- They have bilaterally symmetrical bodies that are longitudinally differentiated into head, trunk and tail.
- Bilateral symmetry – left & right sides are mirror images of each other
- Have segmented body with 3 germ layers and well developed coelom.
- Have segmented muscles in an unsegmented trunk, segmentation reflected in arrangement of muscle and in vertebral column
- Cartilaginous or bony endoskeleton present in majority of members
- Ventral heart with dorsal and ventral blood vessels, closed body system
- Complete digestive system with an opening at both ends
- Sexes are separate always

5.4 Difference between Chordates and Non Chordate

	Features	Chordate	Non Chordate
1	Visceral Clefts	Present in pharynx.	Absent
2	Notochord	Present	Absent
3	Heart	Ventral	Dorsal
4	Nerve Cord	Dorsal and Hollow	Ventral and Solid
5	Post Anal Tail	Post anal tail is present in some stages or throughout life.	Post anal tail is absent.

Source: <http://www.biozoomer.com/2011/01/chordate-classification.html>

5.5 Hemichordates

The Hemichordata has been placed in a separate group

So recent classifications have Protochordates with 2 subphyla

1. Urochordata
2. Cephalochordata

5.6 Protochordates

- Name
Protos – First
Chorda – Cord
- Also called the Acraniat
- They are referred to as invertebrate chordates

] Animals indicated as chordate predecessor

- They are the simplest chordates alive today
- They are mostly of small size
- They are all marine
- Adult or larvae have notochord, dorsal nerve chord, pharyngeal gill slit and post anal tail

5.7 Classification

- They include the Hemichordates, Urochordates and Cephalochordates.
- The hemichordates have been removed and placed in a separate phylum of their own.

5.8 Hemichordata:

Hemichordata means half chordates.

-They are worm like benthic marine organisms.

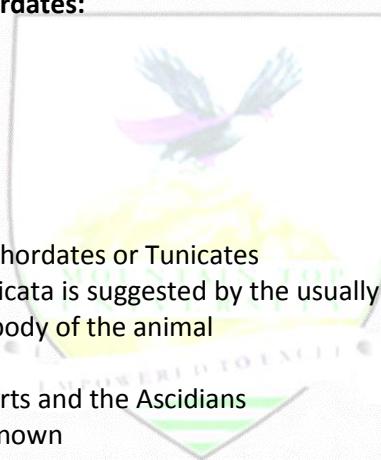
-They live on sea floor in adult forms.

-The body is divided into 3 sections:

Proboscis

Collar

Trunk


5.9 Classification of Hemichordates:

1). Class Enteropneusta

Example: *Balanoglossus*

2). Class Pterobranchia

Example: *Cephalodiscus*

5.10 Urochordata

- Commonly called Tailed Chordates or Tunicates

The name tunicate or tunicata is suggested by the usually tough, nonliving coat called test or tunic that surrounds the body of the animal

The tunic contains cellulose

- They include the sea squirts and the Ascidiarians
- 2,200 Urochordates are known

5.11 Characters

- They are widely distributed and show a great diversity of structure, habits and habitat.
They are marine animals found in all seas, along the shores and up to a depth of more than 2 miles
- They are highly specialized chordates
- (Specialization for Sedentary living).
- They are sessile as adult and the larval forms are free swimming and resemble a microscopic tadpole which bears all the chordates hallmarks.
The chordate affinities are clearly seen in free swimming larvae which have:
 - i). Pharyngeal gill clefts.
 - ii). A dorsal tubular central nervous system.
 - iii) A notochord which is confined only to the tail, that is where they get the name Urochordata (Tailed Chordates).
- They are all hermaphrodites

5.12 Classification of Urochordates

1. Ascidacea (Little bag)

They are called seasquirts because some species discharge a jet of water from the excurrent siphon when irritated.

Example: *Ciona, Ascidia, Larvacea*

Resemble the larvae stage.

Example: *Oikopleura, Appendicularia, Fritallaria*

2. Thaliacea

Example: *Salpa, Dolioium.*

5.13 Cephalochordates

- They inhabit sandy bottoms of coastal waters (marine)

5.14 Nomenclature

- They are commonly referred to as Lancelets.
- They are also called Amphioxus:
Amphioxus – Amphi (Both ends)
Oxys (Sharp)
- The name Amphioxus latter surrendered by priority to Branchiostoma:
Branchiostoma – Branchia (gills)
Stoma (mouth)

5.15 Characters

- They are translucent animals about 5 – 7cm in length
- They are fish like chordates showing the main chordate characters:
Notochord extends the entire length of body and projects beyond the nervous system to the tip of snout (Hence the name cephalochordates).
The cephalochordates have poor development of fins and therefore swim ineffectively
- They have no paired fins
- The head end present but shows little **Specialization**.

5.16 Classification

Comprises A single genus *Branchiostoma* belonging to order *Branchiostomida*
Examples

- 1.) *Branchiostoma nigeriense*
(Found in Lagos lagoon and Pink in color when fresh)
- 2.) *B.leonense*
- 3.) *B. senegalense*
- 4.) *B. gambiae*

5.17 The Vertebrata:

The vertebrates are made up of two super classes:

- a) . Agnatha
- b) . Gnathostomata.

a). Agnatha

- Vertebrates without jaws
- Mainly fishes

b). Gnathostomata

- Vertebrates with jaws
- Consist of fishes and other animals
- They include the following:
 - Acanthodians
 - Placoderms
 - Chondrichthyes
 - Osteichthyes

- Amphibian
- Reptilian
- Aves
- Mammalia

5.18 Convenience Grouping:

The Vertebrates have been grouped for convenience, on the basis of limbs into:

Pisces:

Pisces are fish like vertebrates.

They limbs are fins.

They include:

- Agnatha
- Acanthodians
- Placoderms
- Chondrichthyes
- Osteichthyes

5.19 Tetrapod:

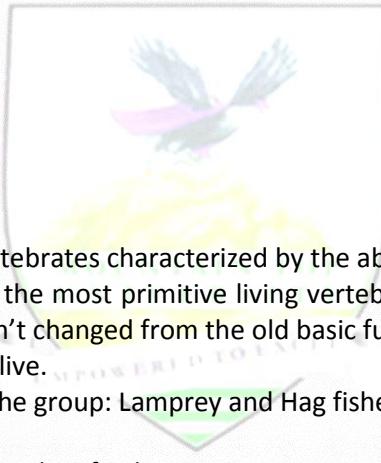
This includes:

Amphibia

Reptiles

Agnathans

Definitions


A / Gnathan – without jaws

Characters

- 1).They are the earliest known vertebrates characterized by the absence of jaws.
- 2).They are currently regarded as the most primitive living vertebrates because as far as vertebrate features are concerned they haven't changed from the old basic functions
- 3).Many extinct and just few are alive.

Living representatives of the group: Lamprey and Hag fishes

- i.) Lamprey
 - a. *Lampetra fluviatilis* – freshwater
 - b. *Petromyzon marinus* – Marine
- ii.) Hag fishes
 - a. Atlantic hag fish – *Myxine glutinosa*

5.20 Classification of Agnatha

Divided into two:

- i.) Ostracoderms – Cephalaspis

They are extinct and are found as fossils.

They have head with heavy armor and bony dermal plates on skin.

- ii.) Cyclostoma a). petromyzontia – *Lampetra fluviatilis*, (Freshwater).

Petromyzon marinus (Marine).

(Commonly called LAMPREY).

- b). Myxinoidea - *Myxine glutinosa*

Bdellostoma

(Commonly called HAG FISHES).

The cyclostomata have long rounded and eel like bodies.

They are rounded mouth, from which the name Cyclostomata is derived,

The mouth is also suctorial.

5.21 Gnathostomata:

Acanthodians

Placoderm.

(The Placoderm and Acanthodians are the extinct forms).

Chondrichthyes.

Osteichthyes.

Amphibia.

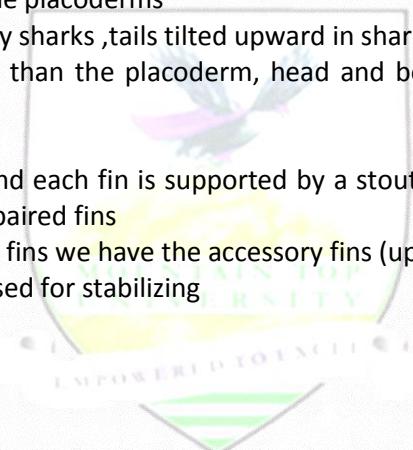
Reptilia.

Aves.

Mammalia

(The Chondrichthyes, Osteichthyes, Amphibia, Reptilia, Aves and Mammalia are the living forms)

5.22 Acanthodians & Placoderms


- Both are extinct groups
- Both are armored fishes
- They are covered by large bony plates or scales

5.23 Acanthodians -

- Appeared earlier than the placoderms
- They are also called spiny sharks, tails tilted upward in shark-like pattern
- They carried less armor than the placoderm, head and body covered with bony plates and scales
- Small
- Paired fins developed and each fin is supported by a stout spine, spines located at anterior edge of dorsal, anal and paired fins
- In addition to the paired fins we have the accessory fins (up to five in number)
- The accessory fins are used for stabilizing

Examples

- a.) *Climatius reticulatus*
- b.) *Ischnacanthus*

5.24 Placoderms

- Plac plate – derma skin (plate skin)
- Heavy armor of large bony plates covered head and thorax (cephalo thorax) while the posterior body was covered by small scales.
- Note: Armor of head and thorax meet at a hinge movement to increase gaps.
- Scales were diamond-shaped.
- Evolved a great variety of forms, very grotesque in appearance. Unlike modern fishes (ugly, absurd, distorted)
- Example: *Asterolepis ornata*

5.25 Chondrichthyes:

1. All are marine except the river stingray – *Potamotrygon garouensis* which is found in fresh water
2. They are cartilaginous fishes. The skeleton is made up entirely of cartilage
3. The skin is covered with scales. The scales are referred to as placoid scales

Structure of Placoid Scales

- a.) Basal part – buried in dermis
- b.) Spine – tooth-like, protecting from epidermis

4. The gills are not covered by operculum
- Each gill opens separately on the body

- Usually 5 pairs on each side of body
- 5. The pelvic fin is a sexually dimorphic structure
- Pelvic fins modified to form claspers in males
- 6. The mouth is located ventrally
- 7. Tail fin – usually heterocercal (Assymetrical)

Classification of Chondrichthyes:

Chondrichthyes

- a.) Elasmobranchi
 - i.) Selachii (shark)
 - ii.) Batoidea (rays & skate)
- b.) Bradyodonti/Holocephali
 - i.) Elasmobranchi
 - ii.) Selachii – sharks
 - Example
 - Dogfish – *Scyliorhinus canicula*
 - White shark – *Carcharodon carcharias*
 - Hammerhead shark – *Sphyrna couardi*
 - Saw fish – *Pristis pristis*
 - iii.) Batoidea – Rays
 - *Torpedo torpedo* – (Electric ray).
 - *Dasyatis margarita* – (Stingray).

Skate – *Raja eglanteria*

- A.) Bradyodonti/Holocephali:
 - Chimaera* sp – (rat faced fish / rabbit fish).

5.26 Osteichthyes:

- 1.) Inhabit both fresh and marine waters.
- 2.) Skeleton is made up of bone
- 3.) Skin covered by cycloid, ctenoid or ganoid scales
- 4.) Mouth located terminally / sub terminally
- 5.) Gills are covered by Operculum or gill cover
- 6.) Presence of bladder in many species
- 7.) Tail usually homocercal
- 8.) Pelvic fins not modified to form claspers

Classification

Ostiechthyes

- A).Sarcopterygii
 - Crossopterygii
 - dipnoi
- b).Actinopterygii
 - Chondrostei
 - Holostei
 - Telostei
- i.) Sarcopterygii – flesh finned fishes
 - a.) Crossopterygii – lobe fins e.g. *latimeria* sp
 - b.) Dipnoi – lung fishes e.g. *Protopterus*
- ii.) Actinopterygii – Ray fins
 - Example
 - a.) *Oreochromis niloticus* – Tilapia

Clarias gariepinus - Catfish.

5.28 Class Amphibia

- The word Amphibian means vertebrates that live two lives, leaving partly on land and partly on fresh water.
- Amphi – dual;
- Bio – life
- They are the lowest and earliest tetrapod's which first of all successfully descended on land from fish like ancestors possibly in Devonian times.
- The present day representatives of the class are: Toads, Frogs, Salamanders and limbless tropical caecilians
- They consist of 2000 species comprising of 250 genera

Characteristics of Amphibians

- They are coldblooded, (poikilothermic or ectothermic)
- The skin lacks scales, the skin are smooth or rough and kept moist by glands for cutaneous respiration
- They respire by lungs, skin or the mouth lining or gills in the developmental stage
- The skull is provided with two occipital condyles.
- Heart is 3 chambered (2 atria and one ventricle)
- Red blood corpuscles are biconvex, oval and nucleated.
- They possess 4 pentadactyl limbs which are supported by girdles and are adapted for locomotion both on land and water as well.
- May produce distinctive sounds.
 - Fertilization external
 - Most are oviparous
 - Egg with some yolk and enclosed in gelatinous covering usually laid in water
 - Development is always indirect as larva is formed during life cycle which is generally known as Tadpole.

Classification of Amphibians

- Pro Anurans - Extinct forms
 - Example: *Eryops*
- Anurans - Frogs and Toads
 - Example – *Bufo*
- Urodela - Newts and Salamanders
 - Example: *Salamandra, Amphiuma, Triton*
- Apoda - Caecilians
 - Example: *Icthyophis, Uraeotyphlus, Siphonops*

5.29 Class Reptilia

- They are coldblooded terrestrial or aquatic animals
- 5000 known species
- They originated from amphibians
- The earliest reptiles the cotylosaur called the stem reptile resembled the labyrinthodont amphibians.
- Reptiles are believed to have given rise to birds and mammals.
- Reptiles flourished in the Mesozoic. The Mesozoic era is called the age of reptiles
- They are regarded as the first true land vertebrates'.
- Whereas the amphibians are imperfectly adapted for life on land, the reptiles are perfectly adapted to living on dry land. They have become totally emancipated from water.

Characteristics of Reptiles

A). Characteristics that have made them truly successful on land.

- The body is covered by horny scales or scutes without epidermal glands (Some have bony dermal plates). The skin is relatively water proof. The scales are dead structures produced from epidermis by hardening or keratinization.
- They developed an intromittent organ in form of a penis which allowed for internal fertilization.
- They developed a cleidoic egg. The cleidoic egg is a large yolk egg covered in most cases by a shell of calcium carbonate. The shell functions to protect the egg from desiccation and also to protect the embryo.
 - Parts of the cleidoic egg are:
 - Amnion – forms a pond around the embryo
 - Chorion – serves for protection and respiration
 - Allantois – serves for storage of waste products for respiration
 - Yolksac – digest the yolk and pass product to embryo

B). Other characteristics:

- Heart divided into 2 auricles and incompletely divided ventricle (ventricle begins to divide into 2 parts). The division complete in crocodiles. Red blood cells are nucleated, oval and biconvex.
- Kidneys are metanephric (mesonephric in amphibians). No nephrostomes. Each kidney provided with separate ureter. They are associated with water conservation; they are Uricotelic – excrete uric acid (not urea, not ammonia).

Classification of Reptilia

They have been divided into 4 subclasses:

- **Anapsida** - Extinct
 - Example: Seymouria, Chelone, Chrysimis, *Trionyx*
- **Parapsida**
 - Example : *Icthyosaurus*, *Protosaurus*
- **Diapsida**
 - Example: Sphenodon, Gecko, Chameleon, Iguana, Varanus, Crocodile, Alligator
- **Synapsida**
 - Example: *Dimetrodon*, *Cynognathus*

5.30 Class Aves

- Number 8950 species.
- They are aerial, terrestrial and aquatic.
- They arose in the jurassic from ornithischian dinosaurs.
- They became modernized in the cretaceous, which involved both physiological and morphological changes such as constant temperature, fusion of skull bones, formation of pneumatic bones, fusion of vertebrae to form synsacrum & a suppression of the tail.
- They have many characters resembling those of reptiles.
- The Reptilia and Aves are placed together as SAUROPSIDA because of similarities
- *Achaeopteryx* shows characteristics of both reptiles & birds.

Characters of Aves

- Warm blooded vertebrates.
 - Endothermal craniates.
 - Body temperature, high & constant in correlation with their energy.
- Possess exoskeleton of epidermal feathers on the greater parts of the body.
- Skin devoid of glands except an oil gland on the tail and the tail is much reduced.

- Eyes well developed with – large pecten -
- Lungs spongy & non distensible, they are continued into air sacs (Some of air sacs connected with air cavity in bone).
- Fore limbs are modified to form wings each bearing 3 clawless digits & provided with
- Hind limbs articulate far forward to support the body weight in standing (bipedal).
- Hind limbs are adapted for walking, perching swimming and bear 4 toes,
- Never more than four digits and they are clawed.

Skeleton:

- Skull is monocondylic, having single rounded occipital condyle
- Bones forming skeleton are spongy, light in weight containing air cavity
- Long bones are light with air spaces and no marrow.

Alimentary canal:

- Modern birds have no teeth, a horny beak is present.
- Beak & claws have horny sheath and feet are covered with scale.
- Stomach divided into a glandular proventriculus and a muscular gizzard.

Excretory system:

- They have 3 lobed Meta nephric kidneys; however a urinary bladder is absent.

Blood system:

- Heart is 4 chambered and only the right aortic arch is present.
- Red blood cells are oval, nucleated & biconvex.

Reproductive system:

- Sexes separate & sexual dimorphism is well marked.
- Left ovary alone is present, Right ovary & oviduct, usually atrophied.
- Oviparous with large yolk eggs enclosed in shell membrane and a hard shell (The embryo has amnion, allantois & yolk sac).
- The young may be precocial or altricial when hatched.
 - Precocial – able to fend for themselves.
 - Altricial - naked and dependent on parents for food for some time, in which case, they receive much parental care.
- Fertilization is internal.

Classification of Aves

- **Subclass Archaeornithes** - Extinct birds
 - Example: *Archaeopteryx archaeonnis*
- **Subclass Neornithes** (22 orders) - Living as well as extinct birds.
 - Extinct- *Hesperornis*, *Ichthyornis*
 - Living – Ostrich – *Struthio camelus*
Kiwi - *Apteryx*
Penguin - *Aptenodytes*

5.31 Class Mammalia

- Greek word- Mammae –meaning mammary glands.
- Top of the animal kingdom
- Believed (undoubtedly) to have been derived from the reptilian subclass Synapsida. Most probably from a mammal like reptile the THERAPSIDS
- Tertiary period is known as the age of mammals.
- Since this period, mammals have radiated, adapted, and colonized almost all parts of the globe in different ecological conditions.
- The body is usually covered with hairs which are epidermal in origin (hairs are not found in the cetaceae).
- They are warm blooded or ectothermal or homiothermal animals.

- The skin is provided with sebaceous, sweat, scent and milk glands.
 - Milk glands produce milk to nourish the young for sometimes after birth. The possession of milk glands (mammae) is where the name mammalia has been derived.
 - Sudoriporous(Sweats).
 - Sebaceous (oil glands).
- Skull is provided with two occipital condyles (That is Dicondylic skull).
- Two pairs of pentadactyl limbs present (digits in fore & hind limb never more than five) which are adapted variously for walking, running, climbing, burrowing, swimming or flying.
 - Limbs are plantigrade, digitgrade or unguligrade.
- Toes is usually provided with horny claws, nails, hoofs or fleshy pads in aquatic forms.
- Nasal passage, usually long and mobile
- Both jaws are provided with teeth embedded in sockets
- External ear or pinna with external auditory meatus present
- The pinna may be reduced or absent in burrowing and aquatic forms.
- The middle ear is provide with 3 ear ossicles; malleus, incus and stapes.
- The teeth are thecodont, diphyodont and heterodont.
- Thecodont means both jaws are provided with teeth embedded in sockets (Embedded in the alveolar pocket of jaws).
- Diphyodont means two sets of teeth are recognized during the life time; deciduous or milk teeth (replacable) and permanent teeth.
- Heterodont: that is the teeth are differentiated into 4 types, depending on feeding habits: Incisor, canine, molars. Teeth are rarely absent.
- Tongue usually mobile.
- Eyes is provided with mobile lids.
- Heart 4 chambered, with only a left aortic arch (aortic arch asymmetrical, meaning only left aortic arch present).
- Respiration occurs only by lungs and usually a larynx with vocal cords present.
- Erythrocytes is more spherical and non-nucleated (except in camel).
- A muscular transverse partition, the diaphragm, separates the body cavity into an anterior thoracic cavity and a posterior abdominal cavity.
- Brain well developed with 4 optic lobes and specialized with different centers like memory and learning.
- Males are with a copulatory organ (penis)
- The testis is situated outside the abdominal cavity in a scrotal sac (except in aquatic mammals & elephants).
- They are usually viviparous.
- Fertilization is internal.
- Development of embryo occurs in uterus of mother where a placenta is formed by the association of uterine and foetal tissues.
- Placenta helps the embryo in the physiological exchange of materials from the maternal blood and thus it brings about nutrition, excretion and respiration of the embryo in the womb.

1. Subclass Prototheria – found in Australia, Tasmania, New Guinea. They have only one Order Monotremata

Examples of Monotremata: *Echidna* sp, *Ornithorhynchus* sp

2. Subclass Theria - This inludes the Marsupials and placenta animals

a). Infra class Metatheria

i). Order Marsupiala - Marsupium or brood pouch are present in the females. Placenta usually absent.

Examples: Opossum – *Didelphis*
 Tigercat – *Dasyurus*
 Marsupial mole – *Caenolestes* and *Notoryctes*
 Bandicoot – *Parameles*
 Kangaroo – *Marcopus*

b). Infra class Eutheria - Young always nourished for a considerable time in the uterus by means of allantoic placenta and born in a relatively advanced state.

i). Order Insectivora - Snout usually long & tapering.

- Examples: Hedgehog – *Erinaceus*, *Paraechinus*
 Mole – *Scapanus*, *Talpa*
 Shrew – *Sorex*, *Echinosorex*

ii). Order Dermoptera - Commonly known as flying lemurs

- Example - *Galeopithecus*

iii). Order Chiroptera - Commonly known as true flying lemurs

- Examples: Fruit eating bats:(Sub order Megachiroptera): *Pteropus*, *Xanthorpygia*, *Cynopterus*
 Brown Bat: (Suborder Microchiroptera): *Magaderma*, *Rhinolophus*, *Desmodus*
Eptesicus

iv). Order primates - Completely hairy and generally arboreal mammals.

- Examples: Suborder I Lemuroidea: *Lemur*, *Indris*, *Chiropale*, *Chiromys*, *Loris*
 Suborder II Tarsioidae: *Tarsius*, *Spectrum*
 Suborder III Anthropoidea: Monkeys, Apes, Man

v). Order Edentata

- Examples: Sloth, Armadillos, American ant eater.

vi). Order Pholidata

- Example: *Manis* (pangolin or scaly anteater)

vii). Order Lagomorpha

- Example: Rabbits & Hares.

viii). Order Rodentia

- Example: Squirrel – *Funambulus*
 Houserat – *Rattus rattus*
 Porcupine – *Hystrix*
 Guinea pig

ix). Order Cetace

- Examples: Whales, Dolphin

x). Order Canivora

- Examples: Sub order I Fissipedia –
 Lion – *Panthera leo*
 Tiger – *Panthera tigris*
 Leopard
 Civet cat
 Wolf
 Fox
 Sub order II Pinnipedia – Sea lion – *Otario jubata*
 Walrus - *Trichecus*
 Seal - *Phoca*

xi). Order Tubulidentata

- Example: Aardvark

xii). Order Proboscidea

- Example: Elephant – *Elephas*

xiii). Order Hyracoidea

- Example: Procavia or Hyrax

xiv). Order Sirenia

- Example: Dugong – *Halicore dugong*
Trichecus – Manatees

xv). Order Perissodactyla

- Example: Horse – *Equas*
Zebra
Rhinoceros

Post-Test

6. Mention 5 main characters (possessions) of chordates
7. Draw and label a generalized diagram of a chordate
8. Complete the table below:

	Amphibia	Reptilia	Aves	Mammalia
Fertilisation				Internal
Body temperature	Cold-blooded			Warm-blooded
Heart chambers		Three		
Red blood shape			Biconvex, oval	Spherical

Bibliography

<http://www.biozoomer.com/2011/01/chordate-classification.html>

<https://byjus.com/biology/phylum-chordata-classification/>

<https://courses.lumenlearning.com/wm-biology2/chapter/characteristics-of-chordates/>

<https://en.wikipedia.org/wiki/Chordate>

<https://manoa.hawaii.edu/exploringourfluidearth/biological/invertebrates/phylum-chordata>

N. P. O. Green, G. W. Stout and D. J. Taylor (2010). Biological Science 1 & 2. Third Edition. Cambridge University Press, UK. 984p

S.T. Ramalingam (2013). Modern Biology. Sixth Edition. Africana First Publishers Plc, Nigeria. 573p

LECTURE 6

Hereditry and Evolution

Introduction

Genetics is the study of heredity and variations. Heredity and variations are controlled by genes—what they are, what they do, and how they work. Genes inside the nucleus of a cell are strung together in such a way that the sequence carries information: that information determines how living organisms inherit various features (phenotypic traits).

Objectives

At the end of the lecture, the students should be able to:

- Explain some important concepts in genetics
- Explain Mendel's laws

Definition of Some Concepts

6.1. Heredity:

This refers to the passing/transmission of traits/characters from the parents to offspring. It is the continuity of features from one generation to another which are present in fertilized egg or zygote.


Heredity may be defined as the transmission of characteristics through generations. The characteristics include all physical, physiological and psychological characteristics in organisms. All these characteristics are called traits.

Traits could be acquired or inherited

- Acquired Traits: traits which are acquired due to interaction with the environment. They are not inheritable. For example; if a boxer develops bulging biceps, it does not mean that his son would be born with bulging biceps.
- Inheritable Traits: Traits which can be expressed in subsequent generations; they are called inheritable traits.

The nucleus of a cell contains chromosomes that carry genetic information which are made from long coiled molecules of DNA. The DNA contains genes and they are units of heredity and are responsible for inheritance.

Genes control the expression of characteristics. Different genes are responsible for different traits. e.g the height, complexion, nose shape are controlled by different genes.

Most genes have two or more variations called alleles. E.g the gene for height has two alleles(tall or short). An individual may inherit two identical or two different alleles from their parents.

6.2. **Variations**- refer to differences in characters or traits among individuals of a species. Variation during reproduction is important because it is necessary for survival. For example if the temperature of the earth increases suddenly, most of the bacteria living on earth would vanish. Only few bacteria variants which can tolerate heat have better chances of survival in heat in comparison to non variant bacteria having no capacity to tolerate heat wave. If these variants were not there, then the entire bacteria specie would have been destroyed. Therefore, variation becomes important.

- 6.3. **Genetics** –refers to a branch of biology which deals with heredity and variation
- 6.4. **Genotype**-genetic makeup or constitution of an organism
- 6.5. **Phenotype**- The observable characters in an organism. It also refers to the appearance of the organism. Phenotype is a result of genotype's interaction with the environment. E.g red colour may be controlled by a pair of genes RR. If genotype is RR, phenotype will be red only; if it is Rr, phenotype will also still be red because R is dominant.
- 6.6. **Evolution** may be defined as a gradual development of more complex species from pre-existing simpler forms. It is an extremely slow process and has occurred over millions of years. It also refers to the change in inherited traits in biological population over subsequent generations. Scientists have proven that life evolved in the form of simple unicellular organisms on this earth; and all the organisms which are present today have evolved from a common ancestor.

According to Lamarck, continuous use of a part results in it being well-developed and disuse of a part over a long period of time will result in its degeneration. For example, giraffes were forced to extend their necks and stretch their legs to reach higher vegetation over a period of time.

6.6.a. Evidences of evolution

- Palaentology: Study of fossils is called palaentology. Fossils are defined as preserved remains of a living organism that existed on earth a long time ago. Fossils are formed by the preservation of the remains of the organisms that existed in the earlier days.

- Geological Distribution: The organisms show particular patterns of distribution on earth. The distribution of the species give an indication of how the earth was earlier. It is believed that the earth was a single mass called the Pangea. It consisted of two large continental masses called Laurasia and Gondwanaland that were interconnected by land bridges.
- Other evidences include:
 - Comparative Embryology
 - Comparative Study

All these evidences point to the fact that evolution occurs.

The exact mechanism of evolution, however, is not yet conclusively proven but constant study and research in the above fields is continuing for answers.

The examples below aid further understanding of evolution

Situation 1: A group of red ants is living in a bush. As hunting birds can easily spot red ants in the green background, they enjoy feasting on ants. Due to error in DNA replication, some blue ants come into origin. Hunting birds cannot spot blue ants against a green background and as a result, blue ants survive and red ants become extinct over a period of time. The origin of blue ants happened by chance but it gave survival benefit to the ants. Finally, blue ants could survive and proliferated in the surrounding.

Situation 2: In the same group; some blue ants came into origin and ants of both colours were almost equal in population. One day, an elephant came and trampled the bushes, all the red ants perished in the accident; leaving only the blue ants. This resulted in extinction of red ants but blue ants could continue their race. The survival of blue ants was because of an accident and the accident was the cause of natural selection.

Situation 3: A group of red ants was living in a bush. Due to draught like conditions, availability of food became a problem for the ants and all the ants became weak and underweight. Subsequent generations comprised of smaller ants and the trend continued for a few generations. Situations changed and plenty of food became available. Ants once again developed to their normal size.

In this case, the change in size was a change in phenotype and hence was not inheritable.

6.7. Darwin's Theory of Evolution:

Charles Darwin wrote his famous book 'Origin of Species'. He threw new insights on evolution of species. Some salient points of Darwin's theory are as follows:

1. Organisms have unlimited capacity to reproduce:

Organisms can reproduce offspring at a fast pace. This is necessary for survival, because a higher number of offspring ensures that at least some of them could survive. Each organism has to struggle for its day to day survival.

For example; a frog lays thousands of eggs at one go. The spawn is released in water and it is left to fend for itself. Most of the eggs are either washed away or are eaten by predators.

However, some portion of eggs from the spawn develops into tadpoles. Once again, many tadpoles are eaten up by predators; leaving a few which develop into adults.

It is evident, that a large number of eggs is needed to ensure that at least some of them develop into adults.

2. Natural Selection:

Different individuals of a particular species have different traits and those with more suitable traits are selected by the nature. Each organism needs a particular trait for finding food and finding a mate. Those with better traits are finally able to pass on their traits to the next generation.

- Survival of the Fittest:

Those organisms which are the fittest are able to survive, while others perish. Species become extinct and some species continue to evolve over a period of time.

Speciation: The process of origin of a new species is called speciation.

A species is a group of organisms in which most of the characters are similar and members of a species are able to breed among themselves.

Speciation can happen if two groups of the same species are somehow prevented from interbreeding for several generations.

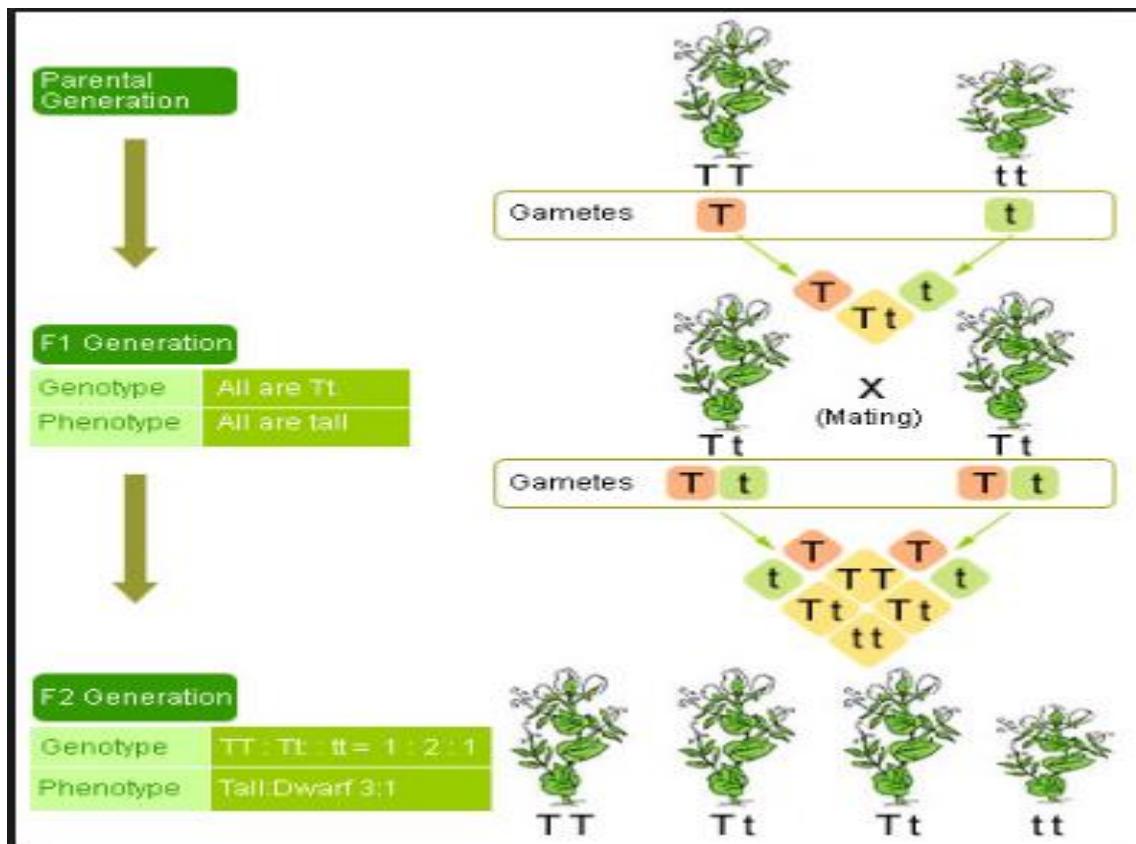
- Factors that lead to speciation include:
 - Geographical segregation or because of some genetic changes.
 - Evolution of new species, because of geographical segregation is called genetic drift.
 - Variation

6.8. Rules/Laws of Inheritance

Gregor Mendel was the first to carry out scientific studies on transmission of characteristics from the parent to the offspring. From these, he proposed the rules of inheritance based on his observations. He selected garden peas/pea plants as they showed many contrasting traits that were easy to track through the generations. Some of the traits he considered were the height, flower colour, shape of the seed, etc.

In the first experiment, Mendel considered only one trait at a time

First he ensured that he had pure-bred tall and pure-bred short plants by selecting seeds from plants that had been self-pollinating for many generations. Mendel observed that characters are often present in pairs.


If the alphabet T represents height, T represents tallness and t represents shortness. If the letter R represents the colour of the flower, R represents red and r represents white.

Possible Reasons of Pea Plants Used by Mendel:

- Pea can be termed as biennial plant, i.e. two generations of a pea plant can grow in a given year. This means that Mendel could get enough time to observe a larger number of generations.
- Many easily identifiable and contrasting characters are present in pea plants.
- Cross pollination can be easily induced in pea plants.

Monohybrid Cross: The cross in which just two contrasting characters are studied is called monohybrid cross. Mendel did monohybrid cross for his first experiment. He selected a pair of contrasting characters for that experiment.

E.g: cross between tall plants and short plants.

Source: <https://www.slideshare.net/jayasreeravikumar1/mendels-monohybrid-cross>

TT represents the genotype of tall plant and tt represents the genotype of short plants.

In the F2 generation, all plants were tall but their genotype was Tt; which means they were not pure tall plants.

Note that when two parents cross or breed to produce offsprings, their progeny is called *F1-generation(first filial generation)*.

When the first generation progeny cross among themselves to produce second progeny, this progeny is called *F2-generation(second filial generation)*. This could be established by the presence of the character of shortness in the F2 generation; in which most of the plants were tall.

This experiment showed that the character of shortness of recessive and hence could not be observed.

The ratio of number of tall plants to that of short plants in F2 generation was 3 : 1. This first experiment led to the first law which states that:

Every individual possesses a pair of alleles for a particular trait. During gamete formation, a gamete receives only one trait from the alleles or a particular trait can be dominant or recessive in a particular generation.(law of segregation)

Or:

- Law of segregation: During gamete formation, the alleles for each gene segregate from each other so that each gamete carries only one allele for each gene.

Or:

- Every individual organism contains two alleles for each trait, and that these alleles segregate (separate) during meiosis such that each gamete contains only one of the alleles

Or:

- The principle of segregation: The two members of a gene pair (alleles) segregate (separate) from each other in the formation of gametes. Half the gametes carry one allele, and the other half carry the other allele.

Dihybrid Cross: The cross in which two pairs of characters are studied is called di-hybrid cross. In his second experiment, Mendel used di-hybrid cross. E.g. the cross between plants with round and green seeds and those with wrinkled and yellow seeds.

RY	Ry	rY	ry	
RY	RRYY	RRYy	RrYY	RrYy
Ry	RRYy	RRyy	RrYy	Rryy
rY	RrYY	RrYy	rrYY	rrYy
ry	RrYy	Rryy	rrYy	rryy

Round/Yellow: 9

Round/green: 3

wrinkled/Yellow: 3

wrinkled/green: 1

9:3:3:1 phenotypic ratio

Source: <https://www.quora.com>

The genotype of round and green seeds is shown by RRyy and that of wrinkled and yellow seeds is shown by rrYY

Mendel's Second Law :

- Law of Independent Assortment: Alleles of different characters separate independently from each other during gamete formation.

Or:

- Genes for different traits are sorted separately from one another so that the inheritance of one trait is not dependent on the inheritance of another. Genes for different traits can segregate independently during the formation of gametes.

In the above example; alleles of texture were assorted independently from those of seed colour. In the F1 generation, all plants produced round and yellow seeds; which means that wrinkled texture and green colour was the recessive character.

When plants of F1 generation were allowed to self pollinate; it was observed that most of the plants in F2 generation produced round and yellow seeds. Some plants produced round green seeds, some produced wrinkled yellow seeds and some produced wrinkled green seeds. The ratio was 9 : 3 : 3 : 1.

This explains the second law called the law of independent assortment(Genes for different traits assort independently of one another in the formation of gametes.)

From this di-hybrid cross, 4 different phenotypes exist.

In conclusion, two or more pairs of alleles segregate independently of each other.

- Law of dominance: Some alleles are dominant while others are recessive; an organism with at least one dominant allele will display the effect of the dominant allele.

Or:

- The Law of Dominance: An organism with alternate forms of a gene will express the form that is dominant.

Post Test

- Differentiate between gene and allele
- Differentiate between monohybrid cross and di-hybrid cross

Bibliography

<http://ib.bioninja.com.au/standard-level/topic-3-genetics/34-inheritance/mendels-laws.html>

<http://www.excellup.com/classten/scienceten/heredityevolution.aspx>

<https://www.livescience.com/27332-genetics.html>

<https://www.khanacademy.org/science/biology/classical-genetics/mendelian--genetics/a/mendel-and-his-peas>

<https://www.slideshare.net/jayasreeravikumar1/mendels-monohybrid-cross>

<https://www.quora.com>

LECTURE 7

ELEMENTS OF ECOLOGY

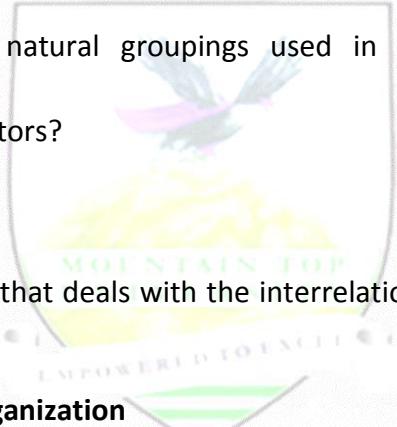
7.0 Introduction

This lecture focusses on preliminary concepts in ecology, and therefore serves to introduce the student to the knowledge of the fundamentals of ecology. Field observation will also be required in order for the good understanding of the subject matter.

Objectives

At the end of this lecture, students should be able to:

1. Know the basic terms and definitions used in ecology
2. Understand the interactions that occur in their own natural environments
3. Have a better knowledge, understanding and appreciation of their environment


Pre-Test

1. Define ecology
2. Mention the various natural groupings used in ecology (levels of ecological organization)
3. What are ecological factors?

CONTENT

7.1 What is Ecology?

Ecology is a branch of science that deals with the interrelationship between organisms and their environment.

7.2 Levels of Ecological Organization

Species: They are organisms that are morphologically similar, and can breed and produce fertile offspring.

Population: It is a group of individuals of the same species occupying a given area; e.g. a population of Agama lizards in MTU campus.

Community: It is an assemblage of all the populations of organisms living and interacting in a particular area. An example is the community of plants and animal in a pond or desert.

Ecosystem: It is composed of a biological community and its physical environment. The environment includes the abiotic factors and the biotic factors.

Biome: A broad regional type of ecosystem characterized by distinctive climate and soil conditions and distinctive kind of biological community adapted to such conditions.

Biosphere: It is the sum of all the biomes established on earth, it is the part of the earth's crust, water and the atmosphere that supports life.

7.3 Structure of Ecosystems

Each ecosystem has two main components:

(1) Abiotic Components:

The nonliving portions or the physical and chemical environment prevailing in an ecosystem form the abiotic components. They include water, soil, sunlight, temperature, humidity etc.

(2) Biotic Components:

They are the living organisms in the environment. They include plants, animals and micro-organisms (Bacteria and Fungi).

7.4 Ecological Factors

In any ecosystem, a living organism is influenced by a number of factors. These environmental factors are known as ecological factors. They may be biotic (living) and abiotic (nonliving). The sum of all these factors constitutes the environment of an organism.

All these ecological factors can be broadly classified into the following divisions:

(1) Climatic or aerial factors:

(a) Light - it plays an important role in plant ecology; because without light the process of photosynthesis cannot take place. Some animals feed during the daytime and rest at night while others do the reverse.

(b) Temperature - The temperature at which physiological processes are at their maximum efficiency is called optimum temperature. The minimum, optimum and maximum temperatures are called cardinal temperatures.

(c) Water - All the physiological processes take place in the medium of water. Protoplasm, the very basis of life, is made up mostly of water. Plants and animals show considerable variation in their requirements of water.

(d) Rainfall - In freshwater habitat rainfall is of utmost importance. Without rain the body of water gradually dries up.

Many animals of forests and grasslands must go to streams, rivers, and waterholes to drink; and certain insects like termites require rain soaked soil before they can start new colonies.

(e) Wind - It plays a part in the creation of water current and waves, which are important ecological factors in aquatic habitats.

(f) Humidity - Atmospheric water content in the form of vapour is known as humidity. Humidity is greatly influenced by intensity of solar radiation, temperature, altitude, wind, water status of soil etc.

(g) Atmospheric Gases - Some principal gases like nitrogen, oxygen, carbon-dioxide, helium, hydrogen, methane, ozone etc. are found in atmosphere. In addition to these gases, there is also water vapour. Industrial gases, dust, smoke particles, microorganisms etc. are present in the atmosphere. These gases have important influence on the environment.

(2) EDAPHIC FACTORS:

These deal with formation of soil, its physical and chemical properties, and related aspects of soil, such as the structure and composition of soil, its physical and chemical features.

Soil is usually defined as a **complex mixture of weathered mineral materials from rocks, partially decomposed organic molecules, and a host of living organisms.**

Thus, soil has mainly the following components:

- (i) Mineral matter.
- (ii) Soil organic matter or humus.
- (iii) Soil water/soil solution.
- (iv) Soil atmosphere.
- (v) Biological system (fauna of bacteria, fungi, algae, protozoa, arthropods, etc.).

Soil Profile:

Soil profile is a series of horizontal layers in the soil that differ in chemical composition, physical properties, particle size, and amount of organic matter. Each recognizable layer is known as a horizon.

- O horizon
- A horizon (topsoil)
- E horizon (zone of leaching)
- B horizon (subsoil)
- C horizon (weathered parent material)
- R horizon (bedrock)

Soil Profile/Soil Horizon

Source: https://www.geocaching.com/geocache/GC3BPKM_rodeo-beach-soil-horizons?guid=ce9aee5a-8bc9-47d1-8d31-cc77a84ff89d

Soil Erosion:

Soil erosion is the wearing away and transportation of soil by water, wind, or ice. Soil erosion is a naturally occurring process on all land, but becomes a problem when human activity causes it to occur much faster than under natural conditions.

Agents of Soil Erosion: Soil erosion is caused by a number of agents.

These are:

(i) Water erosion: - Rain drops remove the soil particles. It results from soil splash caused by the impact of falling raindrops. It is also known as **splash erosion**. The removal of the fairly uniform layer of soil from the land surface by the action of rainfall and runoff is called **sheet erosion**. When rivulets of running water gather together and cut small channels in the soil, the process is called **rill erosion**. When rills enlarge to form bigger channels or ravines that are too large to be removed by normal tillage operations, we call the process **gully erosion**. **Streambank erosion** refers to the washing away of soil from the bank of established streams, creeks, or rivers, often as a result removal of trees and brush along streambanks and by cattle damage to the banks.

(ii) Wind erosion: - In dry (arid) regions the soil is mainly sandy and the vegetation is grossly inadequate or in areas where there is loss of natural vegetation cover of land due to deforestation and over grazing, mining activities etc. there is the presence of dry and dusty soil. Heavy wind causes loss of such soils when soil particles are blown away.

(c) Soil Conservation:

Soil erosion can be controlled through adoption of various methods and conservation procedures. The soil erosion is mainly due to wind and water, thus, the soil conservation methods should be through:

- (i) Protection of soil from the severity of rain drops (through afforestation).

- (ii) To prevent water from concentrating and passing through the slopes.
- (iii) To slow down the momentum of water flow through various scientific techniques.
- (v) Growing of trees and vegetation cover thereby serving as wind breaks, to minimize the wind velocity.
- (vi) Soil binders like growth of grasses can prevent soil erosion etc.

(3) TOPOGRAPHIC FACTORS:

The factors concerned with physical geography of the earth are known as topographic factors. These factors influence vegetation which causes variation in climate of a geographic region and ultimately give rise to a characteristic microclimate.

The different topographic factors are:

(a) Altitude of the place:

As the altitude above the sea level increases, there will be a decrease of temperature. Besides, the values of pressure, humidity, wind velocity etc., also changes. All these factors together give a definite pattern of vegetation.

(b) Steepness and exposure of the slope:

The slope of mountain affects the nature of vegetation. In the northern hemisphere, south facing slopes receives more solar radiation than the north facing slope. This difference in solar radiation brings about a change in vegetation in the two sides of the slope.

(c) Direction of mountain chains:

The direction of mountain chains considerably influences the rainfall in an area. If the mountain chains lie in the path of wind full of water vapour, then there is heavy rainfall on the wind striking side on the mountain chain leading to better vegetation growth, unlike in the opposite side.

(4) BIOTIC FACTORS:

There are all kinds of interactions between different forms of life such as plants, animals, microorganisms etc., and they can be classified as:

(a) Positive Interactions:

When the populations help one another and either one or both the species are benefited, the interactions are known as positive interactions.

The beneficial interactions include:

- (i) Mutualism
- (ii) Commensalism

(b) Antagonism or Negative Interactions:

The relationship between members of the same or different species in which one or both are harmed is termed as antagonism. The relationships of antagonism include:

- (i) Parasitism.
- (ii) Predation.
- (iii) Competition (Intra-specific and Inter-specific).

(5) LIMITING FACTORS:

Limiting factors are conditions in the environment that determine the limit of existence, growth, abundance, or distribution of an organism. Limiting factors are of two types on the basis of their correlation with population density:

(a) The Density Dependent Limiting Factor - The influence of limiting factor increases with the increase in population density. For example, food supply is density dependent.

(b) The Density Independent Limiting Factor:

The effect of such type of limiting factor is irrespective of the population size. For example, flood is density independent. It may wipe out entire population of a species whether these are few or many.

The other limiting factors which can also influence living organisms are the various environmental factors. The environmental factors may be abiotic or biotic. The abiotic factors are both physical factors (light, temperature, water, soil, wind, etc.) and chemical factors (nutrients). The nutrients may be divided into macro-nutrients (required in large quantities) and micro-nutrients (required in traces).

Post-Test

1. Briefly define the following
 - I. Species
 - II. Population
 - III. Community
 - IV. Ecosystem
 - V. Biome
2. List 3 abiotic factors and two biotic factors
3. Define fundamental and realized niches

Bibliography

<https://en.wikipedia.org/wiki/Ecology>

https://www.geocaching.com/geocache/GC3BPKM_rodeo-beach-soil-horizons?guid=ce9aee5a-8bc9-47d1-8d31-cc77a84ff89d

Cadogan, Alan and Best, Gerry. Environment and Ecology. UK Nelson Blackie 1992

Miller, G. Tyler, Spoolman, E. Scott. Living in the Environment: Concepts, Connections and Solutions. Sixteenth Edition. Australia Brooks/cole 2007

N. P. O. Green, G. W. Stout and D. J. Taylor (2010). Biological Science 1 & 2. Third Edition. Cambridge University Press, UK. 984p

S.T. Ramalingam (2013). Modern Biology. Sixth Edition. Africana First Publishers Plc, Nigeria. 573p

LECTURE 8

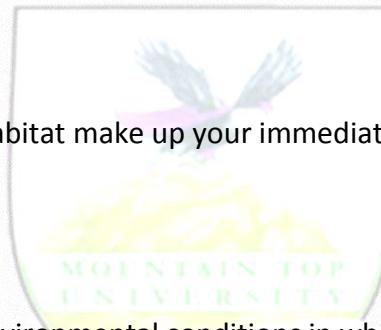
TYPES OF HABITATS

8.0 Introduction

This lecture focusses basic types of habitats that exists in the biosphere. It studies the three major types of habitats which are namely, terrestrial, freshwater and marine habitats. It also identifies the various factors that determines each specific habitat.

Objectives

At the end of this lecture, students should be able to:


1. Identify the various types of habitats in the biosphere
2. Understand the prevalent conditions and factors specific to each type of habitat
3. Have a better understanding and appreciation of their surrounding

Pre-Test

1. Define a habitat
2. Define a niche
3. What kind of specific habitat make up your immediate surrounding

CONTENT

8.1 Definitions

A Habitat is a place or set of environmental conditions in which a particular organism lives. A more functional term, **the Ecological Niche** is a description of either the role played by a species in a biological community or the total set of environmental factors that determine species distribution. **A Niche** describes how a species obtains food, what relationships it has with other species, and the services it provides in its community.

The idea of niches can be further defined in terms of **Fundamental Niche** and **Realized Niche**. A species' **fundamental niche** is the full range of resources or habitat it could exploit if there were no competition with other species. A species' **realized niche** is the resources or habitat it actually uses, which may be much less than the fundamental niche.

There are three major types of habitats namely; Terrestrial, Freshwater and Marine Habitats, which are all located within the **Biosphere**. The marine and freshwater habitats are mainly aquatic (water based).

8.2 The Biosphere – thin outer layer of the earth capable of supporting life. The non-living subdivisions of the biosphere include:

- a. **Lithosphere** – is the rocky materials of the earth's outer shell and is the ultimate source of all mineral elements required by living organisms.
- b. **Hydrosphere** – is the water on or near the earth's surface and it extends to the lithosphere and the atmosphere.
- c. **Atmosphere** – gaseous components of the biosphere. It extends to some 3500 km above the surface of the earth, but life is confined to the lowest 8 to 15 km (troposphere). The oxygen-ozone screening layer in the atmosphere is concentrated

mostly between 20 and 25 km. The main gases present in the atmosphere are by volume, nitrogen – 78%; oxygen, 21%; argon, 0.93%; carbon dioxide, 0.03% and variable amount of water vapour.

8.3 Terrestrial Environment:

The terrestrial habitats are mainly land based biomes.

(a) Biomes Controls

The geographical distribution (and productivity) of the various biomes is controlled primarily by the climatic variables like precipitation and temperature. Most of the classified biomes are identified by the dominant plants found in their communities. The diversity of animal life and subdominant plant, forms characteristic of each biome, and is generally controlled by abiotic environmental conditions and the productivity of the dominant vegetation.

b) Major Biomes

(i) Deserts

Desert is a temperate or tropical biome arid region commonly occurring where there is less than 10 inches (<25cm) of precipitation per year, and high evaporation. Their vegetation is sparse, but it can be surprisingly diverse, and a most desert plants and animals are highly adapted to survive long droughts, extreme heat, and often extreme cold. Adaptations to such conditions include water-storing leaves and stems, thick epidermal layers to reduce water loss, and salt tolerance. An example of a typical desert plant is the cactus.

Like plants, animals in the desert are specially adapted. Many are nocturnal, spending their days in burrows to avoid the sun's heat and desiccation. Pocket mice, kangaroo rats, and gerbils can most get of their moisture from seeds and plants. Desert rodents also have highly concentrated urine and nearly dry faeces that allow them to eliminate body waste without losing moisture. Other animals found in the desert include specific types of spiders, scorpions, lizards, snakes, Jack rabbits, antelopes and camels.

(ii) Grasslands

Grasslands occur where there is enough rain to support grass but not enough for forests. There are two main divisions of grasslands, namely tropical grassland or savannas and the temperate grasslands.

Tropical grasslands (Savannas) - Tropical grasslands can occur in regions with as much as 47.2 in (120 cm) of rainfall per year, but under highly seasonal conditions with a pronounced dry season. Savannas are dominated by grasses and other herbaceous plants, but they also have scattered shrub and tree sized woody plants, which form a very open canopy. The savannas in Africa supports a diverse assemblage of large mammals, including gazelles and other antelopes, rhinos, elephant, hippopotamus, giraffe, ostrich and buffalo, and some of their predators, such as lion, cheetah, leopard, wild dog, and hyena etc. Extensive savannas are found in parts of subtropical and tropical Africa and South America, and in Australia.

Temperature grasslands - These grasslands occur under temperate climatic regimes that are intermediate to those that support forest and desert. In the temperate zones, grasslands typically occur where rainfall is 9.9-24 in (25-60 cm) per year. Grasslands in North America are called **prairie**. They have animals like Bison, Rein Deer, Fox, Wolf etc.

(iii) Forests

It is a type of biome which is dominated by trees, and also where other plants and animals live. The plants in forests provide shade and protection to many different types of animals. Different types of forest are:

Deciduous forest - These are forest in cool rainy areas, they can be found in the eastern part of the United States and Canada, most of Europe and parts of China and Japan. Deciduous trees shed their leaves each autumn and winter and re-grow them in the springtime. They also have thick bark to protect them from the cold weather. Common trees of this forest biome in North America are species of ash, basswood, cherry, chestnut, elm, magnolia, maple, oak, tulip-tree, walnut etc. Common animals found in this biome include grey squirrels, white-footed mice, white-tailed deer, blue jays, black bear, turkey, rat snake etc.

Coniferous forest (evergreen) - Coniferous forests are made up mainly of cone-bearing or coniferous trees. The leaves of these trees are either small and needle-like or scale-like and most stay green all year around (evergreen). It has fewer animals as comparison to the deciduous forest, as cold weather makes life very difficult in these forests. Common trees of this biome are species of pine, Douglas fir, hemlock, cedar, redwood, spruce, and yellow cypress. Examples of animals living in this habitat include lynx, moose, squirrel, hawk, owl etc.

Rainforest - The reason it is called a "rainforest" is because of the high amount of rainfall it gets per year. The rain forest has a constant temperature with very high humidity.

Rainforests support a very broad array of fauna, including mammals, reptiles, birds and invertebrates. Mammals may include different species of monkeys, squirrels, bats and other families. Reptiles include snakes, turtles, chameleons and other families; while birds include such families as *Vangidae* and *Cuculidae*. Dozens of families of invertebrates are found in rainforests. Fungi are also very common in rainforest areas as they can feed on the decomposing remains of plants and animals. The Amazon rainforest is the largest rainforest in the world.

There are two types of rainforest, namely the tropical rainforest and temperate rainforest.

Tropical rainforests are characterized by a warm and wet climate with no substantial dry season. Mean monthly temperatures exceed 18 °C (64 °F) during all months of the year. Average annual rainfall can be higher than 380 cm (150 in). Rainforests can be found in locations like Southeast Asia, Papua New Guinea, Sri Lanka, Sub-Saharan Africa, South America, Central America and on many of the Pacific Islands.

Temperate rainforests only occur in few regions around the world. Temperate rainforests are rainforests in temperate regions. They occur in North America, Europe, East Asia, South America and also Australia and New Zealand.

8.4 The Freshwater Habitat:

Freshwater is defined as having a considerably low salt concentration (less than 0.5 parts per thousand). They are inland bodies of water that constitute 2.5% of all the water in the world. Freshwater can be divided into two main groups, namely the lentic (standing) and the lotic (running) water bodies.

Salinity is the saltiness or dissolved salt content of a water body.

The lentic water bodies are those that are relatively still, they are generally localized in a basin that is surrounded by land, although limited movement can occur as a result of wind action e.g. Lakes Ponds, Pot holes etc. Due to their lower velocity they have lower oxygen concentration.

The lotic water bodies are those in constant flow, some examples are Rivers, Streams, Mountain brooks, Waterfalls etc. They have high velocity water flow and a high oxygen concentration.

Some of the various types of freshwater under these two groups are described below:

(a) Ponds and lakes

Ponds are generally considered to be small temporary or permanent bodies of water shallow enough for rooted plants to grow over most of the bottom.

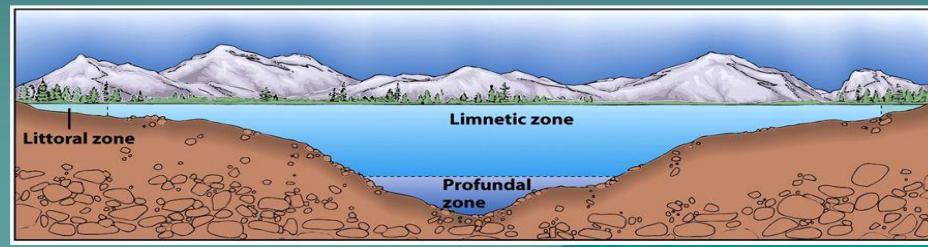
Lakes are inland depressions that hold standing fresh water year-round.

Lakes and ponds are divided into three different “zones” which are usually determined by depth and distance from the shoreline.

The zones are:

(i) Littoral Zone: - The topmost zone near the shore of a lake or pond is the littoral zone. It has rooted vegetation such as grasses and lilies.

(ii) Limnetic Zone: - The near surface open water surrounded by the littoral zone is the limnetic zone.

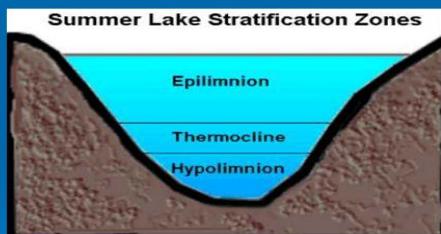

(iii) The Profundal Zone: - This zone is much colder and denser than the other two. Little light penetrates all the way through the limnetic zone into the profundal zone

Temperature varies in ponds and lakes seasonally. Most lakes (deep ones) have what is referred to as thermal stratification, leading to the formation of three (3) temperature layers.

There is the **epilimnion layer** at the top with warmer temperatures, while the colder temperature **hypolimnion layer** is at the bottom, and the **thermocline layer (metalimnion)** in between them.

Lakes and Ponds

- **Littoral Zone** - shallow water area along the shore
- **Limnetic Zone** - open water beyond the littoral zone
- **Profundal Zone** - beneath the limnetic zone of deep lakes



Source: https://www.slideshare.net/n_cool001/aquatic-ecosystem-44400382

Lake Layers

➤ 3 layers

- **Epilimnion**- "upper lake" consists of a free circulating upper layer
- **Metolimnion**- also called thermocline or "middle lake" has a rapid decline in temperature (1 degree Celsius for every meter you go down)
- **Hypolimnion**- "lower lake" is the deep, colder layer

Source: <http://slideplayer.com/slide/3442359/>

(b) Streams and Rivers

These are bodies of water are in constant motion. Precipitation that does not evaporate or infiltrate into the ground runs off over the surface, drawn by the force of gravity into to the sea. Rivulets accumulate to form streams, and streams join to form rivers. Streams are generally shallow when compared with rivers, and sometimes one can even walk across them if they are not so deep and there is no strong water current.

(c) Wetlands

Wetlands are ecosystems of several types in which rooted vegetation is surrounded by standing water during part of the year. They are mostly found at the edges of ponds, lakes, rivers and streams. Other terms used for wetlands include **marsh (wetlands without trees)**, bog, flood plain, prairie pothole and **swamp (wetlands with trees)**. Some of the plants found in wetlands include water lilies, cattails, sedges and spruce. This habitat supports many animals like amphibians, exotic birds (such as ducks and waders), reptiles and some mammals and fish.

Mangroves are trees that grow in the coastal intertidal zone (salt water), with low oxygen soil.

8.5 Marine Habitat:

Together, the oceans contain more than 97% of all liquid water in the world. Oceans are too salty for most human uses, but they contain 90% of the world's living biomass.

Their salt content is considerably higher than of freshwater habitats (higher than 35 parts per thousand).

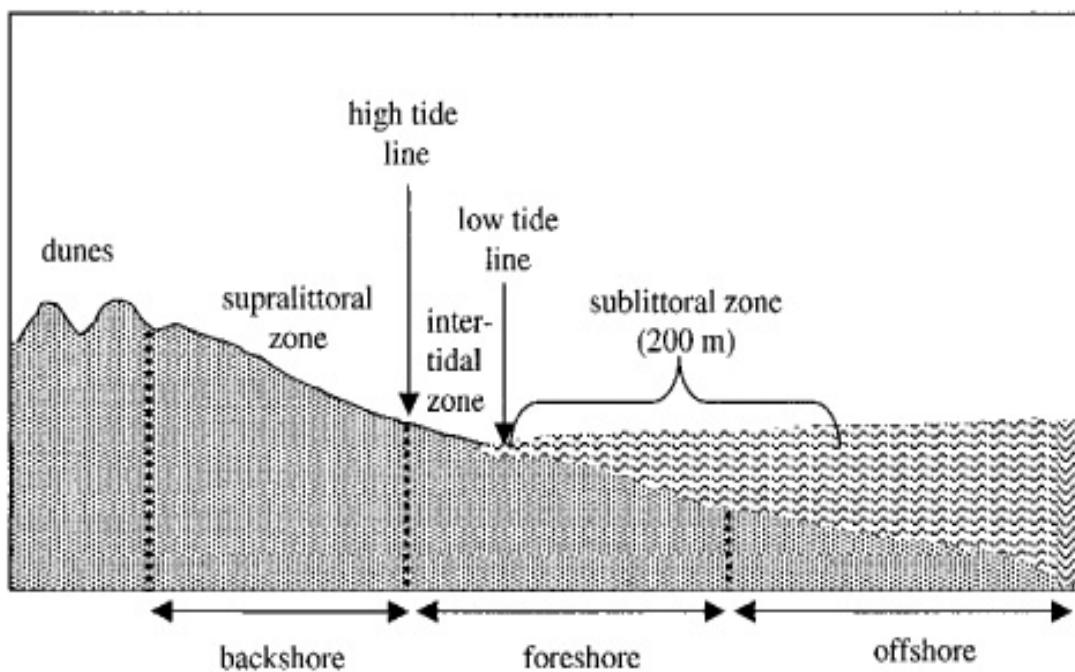
The marine habitat can be studies in terms of horizontal and vertical zones, namely:

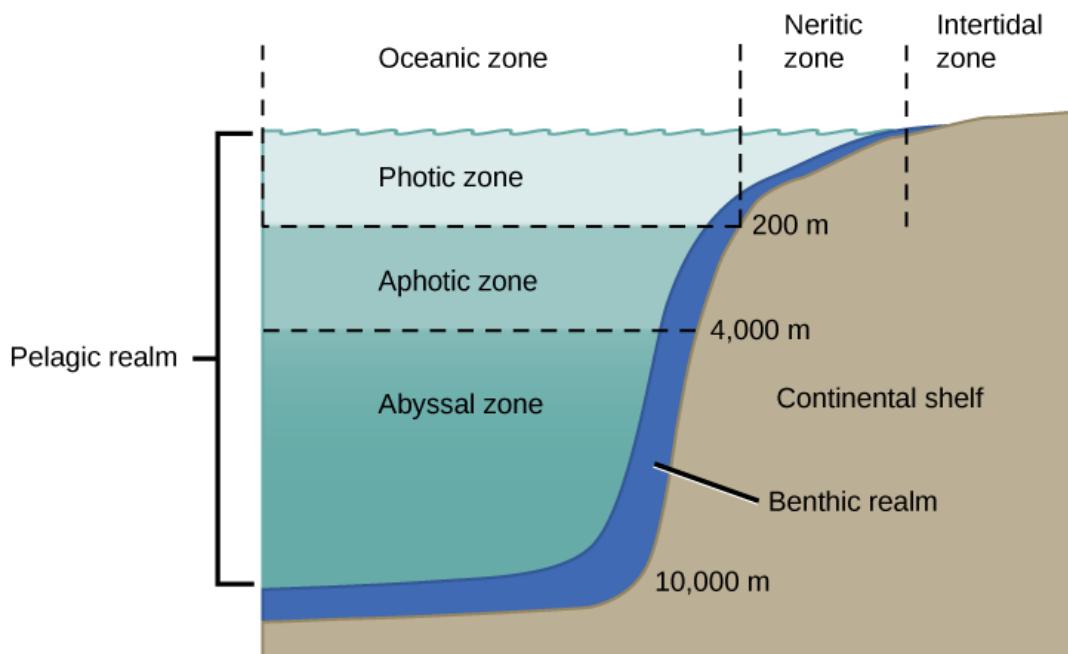
I. Horizontal Zones

The horizontal zones of the ocean are:

(a) Coastal Zone: - It is made up of the **littoral** region which is where the sea meets the land; it is the richest of all marine environment but the harshest. The animals that live there are subjected to pounding, surf, sun, wind, rain, extreme temperature fluctuations, erosion and sedimentation. The animals found there include barnacles, snails, limpet, mussels, sea star etc. This zone consists of three subzones called the supralittoral zone, the intertidal zone and the sublittoral zone.

The **Supralittoral zone** is only underwater during storms, and is located between the high-tide line and dry land. It is where the marine and land habitats meet. The waves splash over it, especially where there is a rocky shore and continually spray it with sea water, especially if the beach is rocky.

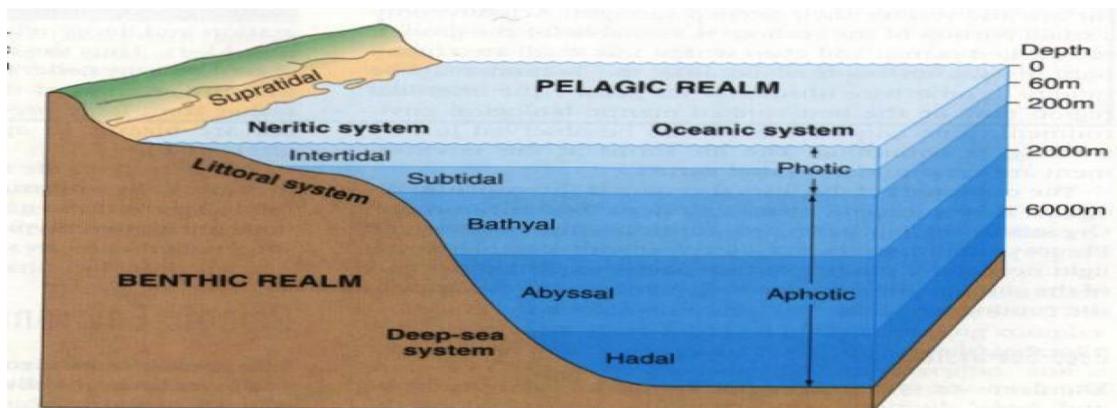

The **Intertidal zone**: area submerged by water at high tide and exposed at low tide. Animals like sea star, limpet, mussels, sea urchins.


The **Sublittoral zone** is always underwater and is below the low tide line. It is bottom part, lying along the continental shelf, varying in depth considerably from a few meters to about 200 meters. It supports a rich variety of animal life as well brown algae

(b) Pelagic Zone: - located seaward of the coastal zone's low-tide mark, this contains the vast open waters of the ocean. Everything except areas near the coast and the sea floor is called the pelagic zone. Two subdivisions are recognized:

i. **Neretic Zone:** the water overlying the continental shelf. These waters usually extend to a depth of 200m. Sunlight penetrates the entire water column and rich in nutrients.

ii. **Oceanic Zone:** It extends from the edge of the continental shelf, over the continental slope, and over ocean floor. It is characterized by darkness and tremendous pressure.



Source: <https://courses.lumenlearning.com/boundless-biology/chapter/aquatic-biomes/>

II. Vertical Zones.

- (a) **Neustic Zone:** the thin film formed by surface tension at the surface of the water
- (b) **Euphotic Zone (epipelagic zone):** It is home to the greatest biodiversity in the sea, largely because of the availability of sunlight that allows photosynthesis. Depending upon water clarity, the bottom of the euphotic zone is about 500 ft below sea level.
- (c) **Aphotic Zone:** this is the remainder of the water column, and is below the euphotic zone. Food chains usually begin with detritus or living algae and bacteria sinking from above. This zone is further subdivided by depth as follows:
 - i. **Mesopelagic zone:** It ranges from a depth of about 500 to 3,280 ft below the sea surface. This zone is a twilight zone where some light filters through but does not reach a level of brightness enough for photosynthesis to occur.
 - ii. **Bathypelagic zone:** this zone ranges from a distance of 3,280 to 13,000 ft, and is completely dark. Bioluminescent organisms, some of the strangest marine creatures of the deep live here. Plants are non-existent in the bathypelagic zone. The giant squid is a resident of the bathypelagic zone and serve as a food source for deep-diving sperm whales.
 - iii. **Abyssopelagic zone:** Ranges from about 13,000 to 20,000 ft below the sea surface. Most animals in the abyssopelagic zone are blind and colourless due to the complete lack of light. The name, "abyssopelagic" comes from the Greek meaning "bottomless abyss".
 - iv. **Hadal zone:** 20,000 to 35,000 ft below the sea surface. The name is from the Greek "Hades", or the Greek underworld.
- III. **Benthic Zone:** This zone contains all the habitats of the sea bottom, whether in coastal, continental shelf, or deep sea environments. Organisms may live within the bottom material or on its surface.

Vertical zones of an Ocean

Source: <https://www.howtosmile.org/resource/smile-000-000-003-763>

8.6. Brackish Water:

This environment is actually a meeting point between the fresh water and the marine water habitat. It occurs in places like **estuaries**, where rivers drain into the ocean, where there is therefore a mixture of fresh and marine water. The salt content of the water is normally higher than that of fresh water and lower than that of marine water due to mixing of both waters (between 0.5 to 35 parts per thousand). The plant and animal species found in this environment are adapted to tolerate a wider range of salinity. Some of the animals include some species of birds.

8.7 Some Important terms:

Waves

Waves are caused by the action of wind on the surface of water and the winds are in turn caused by the heat of the Sun. Their height and period depends on the velocity of the wind, its duration, and the distance over which it is operating.

Tides

Tides is the continuous diurnal variation in water level due to the effects of the gravitational pull of the sun and moon on the earth.

Currents

Currents originate in a number of ways. In lotic freshwaters, rainfall plays an important part, causing fast currents during rainy season when the river is flooded, compared to the trickle of slowly moving water during dry season. Currents in lentic freshwater and the sea, however, are not due to rainfall but mainly due to differences in temperature, density and salinity between parts of the water body in question.

Seas are found on the margins of the **ocean** and are partially enclosed by land. They are smaller than oceans and usually located where the land and ocean meets.

Post-Test

1. Define salinity
2. Mention the 3 temperature layers found in a pond or lake
3. Which part of Nigeria are you likely to find the following:
 - i. Desert
 - ii. Wetlands
 - iii. Savanna
 - iv. Mangrove
 - v. Rainforest
 - vi. Marine habitats
 - vii. Brackish habitats

Bibliography

<https://courses.lumenlearning.com/boundless-biology/chapter/aquatic-biomes/>

<https://en.wikipedia.org/wiki/Habitat>

<http://slideplayer.com/slide/3442359/>

<https://www.howtosmile.org/resource/smile-000-000-003-763>

https://www.slideshare.net/n_cool001/aquatic-ecosystem-44400382

N. P. O. Green, G. W. Stout and D. J. Taylor (2010). Biological Science 1 & 2. Third Edition. Cambridge University Press, UK. 984p

LECTURE 9

INTERRELATIONSHIPS BETWEEN ORGANISMS IN THE ECOSYSTEM

9.0 Introduction

This lecture focusses on the various forms of interrelationships that occur in nature between organisms. Some of these interrelationships are of a micro scale and can therefore not be readily observed due to the minute size of the organisms involved, while some are highly observable. Field observation may also be required in order for the better understanding of the subject matter.

Objectives

At the end of this lecture, students should be able to:

4. Know the basic terms and definitions used in the study of interrelationships between organisms
5. Have a better understanding of the interrelationships that occur in their own natural environments
6. Have a better knowledge, understanding and appreciation of their environment

Pre-Test

4. Define interrelationships
5. Mention the various the various interrelationships in your immediate environment
6. What are ecological factors?

CONTENT

9.1 Ecological Relationship

Ecological relationship is the relationship between organisms in an ecosystem. An **ecosystem** is the interaction between living and non-living things in a particular environment. All organisms in an ecosystem are connected. Each interaction depends on the one before it. Each population interacts with one another in a complex web of relations.

Ecological relationship could be **Beneficial or Harmful/Detrimental**

List of Beneficial Relationships

Symbiosis is a broad category, defined as the living together in close physical association of two or more different organisms.

This includes relationships that are mutualistic, parasitic, or commensal. Mutualism is only one type.

9.2 Mutualism:

Mutualism is a symbiotic relationship in which two organisms usually of different species biologically interact in a relationship in which each individual derives benefit. It is often obligatory.

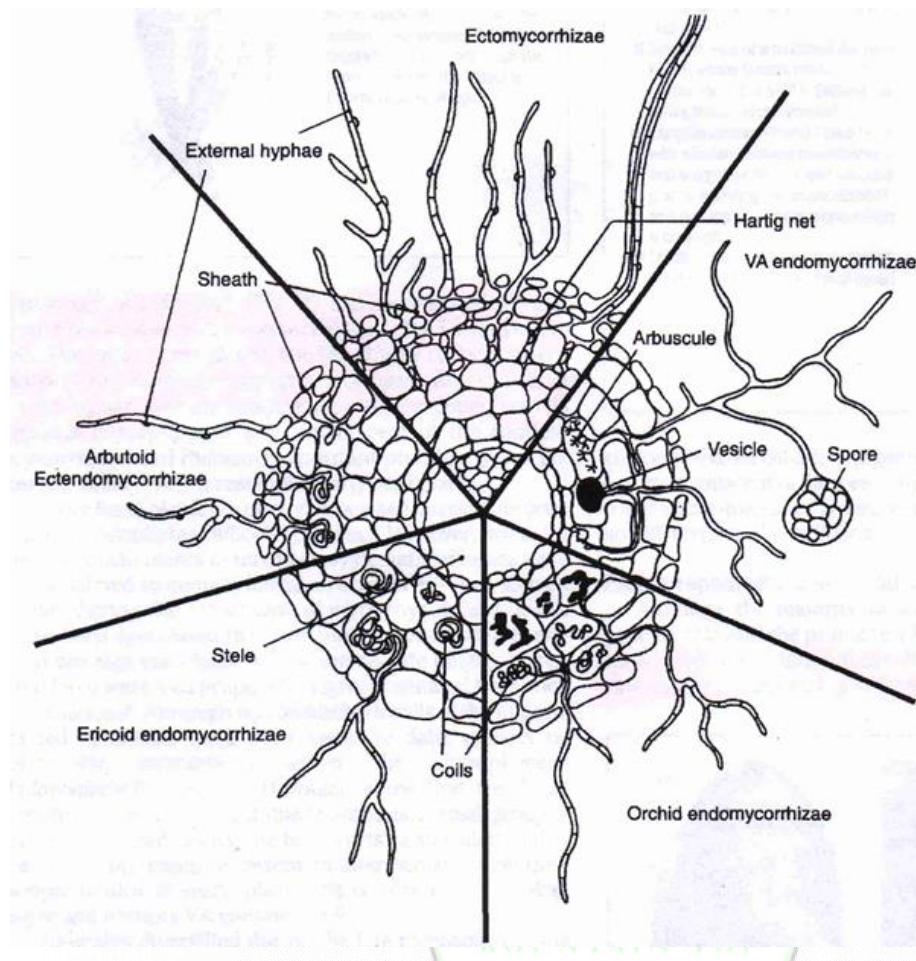
Examples:

1. Bacteria residing in human intestinal tract acquire food from man but also provide man with vitamins we are unable to synthesize for ourselves. Such bacteria include *Bacteroides*, *Lactobacillus*
2. Protozoans in the gut of termites help in digestion of cellulose. The protozoa live in the guts of insects which ingest but cannot metabolize cellulose; the protozoa secrete cellulases, which metabolize cellulose, releasing nutrients that the insects can use.
3. Lichens mutualistic association between a fungus (Ascomycetes) and an alga(green algae/cyanobacterium). The fungal partner is called mycobiont while the algal partner is the phycobiont, Lichens grow on rocks, because the fungal member conserves water and leaches minerals which are provided to the algal partner while the algal partner photosynthesizes and provides organic food for both populations. Lichens have one of three characteristic morphologies
 - (a) Crustose-compact and appressed to a firm substratum
 - (b) Foliose-leaf-like appearance
 - (c) Fruticose-shrubby shape

4. Mycorrhizae: mutualistic association between roots of plants and fungal hyphae. The hyphae improve nutrient uptake of nutrients for the plants, protect the roots of the plants against pathogens, drought resistance, and produce plant growth hormones. The plant in return provides the fungus with carbohydrates. There are seven types of mycorrhizal association, five are endomycorrhizae while the remaining two are ectomycorrhizae.

Endomycorrhizas, in which the fungal structure is almost entirely within the host root, comprising three major and two minor groupings:

- Arbuscular (AM) endomycorrhizas, which are the commonest mycorrhizas, and first to evolve; the fungi are members of the Glomeromycota, they are obligate biotrophs, and they are associated with roots of about 80% of plant species, including many crop plants.
- Ericoid endomycorrhizas are mycorrhizas of *Erica* (heather), *Calluna* (ling) and *Vaccinium* (bilberry), that is, plants that endure moorlands and similar challenging environments. Fungi are members of the Ascomycota (an example is *Hymenoscyphus ericae*). The plant's rootlets are covered with a sparse network of hyphae; the fungus digests polypeptides saprotrophically and passes absorbed nitrogen to the plant host; in extremely harsh conditions the mycorrhiza may even provide the host with carbon sources (by metabolising polysaccharides and proteins for their carbon content). Two specialised subgroups may be separated out of the ericoid endomycorrhizal group:
 - Arbutoid endomycorrhizas , and
 - Monotropoid endomycorrhizas (the mycorrhizal association formed by the achlorophyllous plants of the Montropaceae).


Orchidaceous endomycorrhizas are similar to ericoid mycorrhizas but their carbon nutrition even is more dedicated to supporting the host plant as the young orchid seedling is non-

photosynthetic and depends on the fungus partner utilising complex carbon sources in the soil, and making carbohydrates available to the young orchid. All orchids are achlorophyllous in the early seedling stages, but usually chlorophyllous as adults, so in this case the seedling stage orchid can be interpreted as parasitising the fungus. A characteristic fungus example is the basidiomycete genus *Rhizoctonia* (although this is a complex genus which can be divided into several new genera).

Ectomycorrhizae are the **most advanced symbiotic association** between higher plants and fungi, involving about 3% of seed plants including the majority of forest trees. In this association the plant root system is completely surrounded by a sheath of fungal tissue which can be more than 100 µm thick, though it is usually up to 50 µm thick. The hyphae penetrate between the outermost cell layers forming what is called the **Hartig net**. From this a network of hyphal elements (hyphae, strands and rhizomorphs) extends out to explore the soil domain and interface with the fungal tissue of the root. Ectomycorrhizal fungi are mainly Basidiomycota and include common woodland mushrooms, such as **Amanita** spp., **Boletus** spp. and **Tricholoma** spp. Ectomycorrhizas can be highly specific (for example **Boletus elegans** with larch) and non-specific (for example **Amanita muscaria** with 20 or more tree species). In the other specificity direction, 40 fungal species are capable of forming mycorrhizas with pine.

Ectomycorrhizas can link together groups of trees, the submerged mycelium acting as what has been described as a 'wood-wide-web'. Ectomycorrhizal fungi depend on the plant host for carbon sources, most being uncompetitive as saprotrophs. With few exceptions (*Tricholoma fumosum* being one), the fungi are unable to utilise cellulose and lignin; but the fungus provides greatly enhanced mineral ion uptake for the plant and the fungus is able to capture nutrients, particularly phosphate and ammonium ions, which the root cannot access. Host plants grow poorly when they lack ectomycorrhizas. This ectomycorrhizal group is reasonably homogenous, but a subgroup, ectendomycorrhizas, has been appended.

- Ectendomycorrhiza is a purely descriptive name for mycorrhizal roots that exhibit characteristics of both ectomycorrhizas and endomycorrhizas. Ectendomycorrhizas are essentially restricted to the plant genera *Pinus* (pine), *Picea* (spruce) and, to a lesser extent, *Larix* (larch). Ectendomycorrhizas have the same characteristics as ectomycorrhizas but show extensive intracellular penetration of the fungal hyphae into living cells of the host root.

The principle structural features of the five main types of mycorrhiza.

Source:

5. Rumen endosymbiosis in which bacteria in the rumen anaerobically metabolize cellulose, and then normal digestion occurs; microorganisms produce the majority of vitamins that are needed by the ruminant; methane is also produced in the process.

9.3 Commensalism:

Commensalism is a class of relationship between two organisms where one organism benefits but the other is neutral (there is no harm or benefit). This is a positive, neutral relationship.

Examples:

1. One of the most common examples of commensalism is the relationship between cattle egrets and livestock. The cattle egret is a common species of heron that is found in most regions of the world, and is mostly seen moving along with herds of cattle. This bird moves about in the pastures, and follows livestock such as cattle and horses. The cattle egret eats up the insects hiding under vegetation close to the grounds, which get stirred up when the cattle walk through them.

2. Orchids belong to a family of flowering plants that form a commensal relationship with the trees. It is a well-known epiphytic plant that grows on the branches or trunks of other trees. Orchids are usually found in dense tropical forests. They form their base of attachment on the branches of trees, and benefit by getting adequate sunlight and nutrition that flows down the

branches. The orchids do not grow to a large size, and thus the host tree is not harmed in any way.

3. The common nonpathogenic strain of *Escherichia coli* lives in the human colon; this facultative anaerobe uses oxygen creating an anaerobic environment in which obligate anaerobes (e.g. *Bacteroids*) can grow. The bacteroids benefit but the *E. coli* derives no obvious benefit or harm.

9.4 Parasitism

A non-mutual symbiotic relationship in which one organism benefits and the other is harmed. Parasites may be characterized as:

Ectoparasites—including ticks, fleas, leeches, and lice—which live on the body surface of the host and do not themselves commonly cause disease in the host; or

Endoparasites, which may be either intercellular (inhabiting spaces in the host's body) or intracellular (inhabiting cells in the host's body).

Intracellular parasites—such as bacteria or viruses—often rely on a third organism, known as the carrier, or vector, to transmit them to the host. Malaria, which is caused by a protozoan of the genus *Plasmodium* transmitted to humans by the bite of an anopheline mosquito, is an example of this interaction.

Parasites can also be categorized based on size: a) macroparasites - those visible to naked eye such as Helminths in humans b) microparasites such as bacteria, some fungi and viruses.

Based on their interactions with their hosts and on their life cycles. An **obligate parasite** is totally dependent on the host to complete its life cycle, while a **facultative parasite** is not. A direct parasite has only one host while an indirect parasite has multiple hosts. For indirect parasites, there will always be a definitive host and an intermediate host.

Parasitism is of many types.

Social parasitism in which organisms take advantage of interactions between members of social organisms such as ants, termites, and bumblebees.

Examples include *Phengaris arion*, a butterfly whose larvae employ mimicry to parasitize certain species of ants, *Bombus bohemicus*, a bumblebee who invades the hives of other species of bee and takes over reproduction, their young raised by host workers, and *Melipona scutellaris*, a eusocial bee where virgin queens escape killer workers and invade another colony without a queen.

Kleptoparasitism in which parasites appropriate food gathered by the host. An example is the brood parasitism practised by cowbirds, whydahs, cuckoos, and Black-headed ducks which do not build nests of their own and leave their eggs in nests of other species. The host behaves as a "babysitter" as they raise the young as their own. If the host removes the cuckoo's eggs, some

Adelpho-parasitism is an association in which the host species is closely related to the parasite, often being a member of the same family or genus. An example of this is the citrus blackfly parasitoid, *Encarsia perplexa*, unmated females of which may lay **haploid** eggs in the fully developed larvae of their own species. Cuckoos will return and attack the nest to compel host birds to remain subject to this parasitism.

Pathogenic fungi (parasitic fungi), includes the fungi genera **Verticillium**, **Phytophthora**, **Rhizoctonia** and **Pythium**. These group of fungi being parasitic on plants, draw all the nutrients from the plant and ultimately cause its death.

9.5 Cooperation

It is the process of groups of organisms working or acting together for common or mutual benefit, as opposed to working in competition for selfish benefit. A cooperative behavior is one that benefits an individual (the recipient) other than the one performing the behaviour (the actor). Many animal and plant species cooperate both with other members of their own species and with members of other species.

Example: One example is the ocellaris clownfish, which dwells among the tentacles of Ritteri sea anemones. The anemones provide the clownfish with protection from their predators (which cannot tolerate the stings of the sea anemone's tentacles), while the fish defend the anemones against butterflyfish (which eat anemones).

Another well-known example is of mutually beneficial microbial interactions involves the production of siderophores. Siderophores are iron-scavenging molecules produced by many microbial taxa, including bacteria and fungi. Iron is a major limiting factor for bacterial growth because most iron in the environment is in the insoluble Fe(III) form. In order for bacteria to access this limiting factor, cells will manufacture these enzymes, and then secrete them into the extracellular space. Once released, the siderophore will set apart the iron, making it metabolically accessible for the bacteria.

9.6 Harmful Interactions

Predation

It is a relationship in which members of one species (the **predator**) consume members of another species (the **prey**).

Both predators and prey have adaptations to predation that evolve through natural selection. Predator adaptations help them capture prey. Prey adaptations help them avoid predators. A common adaptation in both predator and prey is **camouflage**. Camouflage in prey helps them hide from predators. Camouflage in predators helps them sneak up on prey.

Mimicry is a related phenomenon where an organism has a similar appearance to another species. One such example is the drone fly, which looks a lot like a bee, yet is completely harmless as it cannot sting at all. Another example of batesian mimicry is the io moth, (*Automeris io*), which has markings on its wings that resemble an owl's eyes. Predators may also use mimicry to lure their prey, however. Female fireflies of the genus *Photuris*, for example, copy the light signals of other species, thereby attracting male fireflies, which are then captured and eaten (see aggressive mimicry).

Some predation entails venom which may do one of the following:

- that subdues a prey creature before the predator ingests the prey by killing, which the box jellyfish does,
- or disabling it, found in the behaviour of the cone shell
- the venom, as in rattlesnakes and some spiders, contributes to the digestion of the prey item even before the predator begins eating.

In other cases, the prey organism may die in the mouth or digestive system of the predator. Baleen whales, for example, eat millions of microscopic plankton at once, the prey being broken down well after entering the whale.

Anti-predatory Adaptations: by preys to prevent them from being consumed are

- a. Aggression- Predatory animals often use their usual methods of attacking prey to inflict or to threaten grievous injury to their own predators. The electric eel uses the same electric current to kill prey and to defend itself against animals such as anacondas, caimans, egrets, and humans.
- b. Mobbing behaviour occurs when members of a species drive away their predator by cooperatively attacking or harassing it.
- c. Chemical defence - Some organisms have evolved chemical weapons that are effective deterrents against predation. It is most common in insects.

9.7 Competition

Competition is a biological interaction among organisms of the same or different **species** associated with the need for a common resource that occurs in a limited supply relative to demand. In other words, competition occurs when the capability of the environment to supply resources is smaller than the potential biological requirement so that organisms interfere with each other. Plants, for example, often compete for access to a limited supply of **nutrients, water, sunlight, and space**.

Competition could be:

- i. Interspecific – occurs between organisms of different species when vying for access to essential resources. Interspecific competition may occur when individuals of two separate species share a limiting resource in the same area. If the resource cannot support both populations, then lowered fecundity, growth, or survival may result in at least one species. Interspecific competition has the potential to alter populations, communities and the evolution of interacting species.
- ii. Intraspecific – occurs between organisms of same species. Studies show that intraspecific competition can regulate population dynamics (changes in population size over time). This occurs because individuals become crowded as a population grows. Since individuals within a population require the same resources, crowding causes resources to become more limited.

Post-Test

1. Mention any positive and negative interrelationships that involves man
2. What is mycorrhizal association?
3. Mention the interspecific relationships you have been involved in

Bibliography

<http://education.seattlepi.com/five-types-ecological-relationships-4019.html>

<https://en.wikipedia.org/wiki/Commensalism>

[https://en.wikipedia.org/wiki/Mutualism_\(biology\)](https://en.wikipedia.org/wiki/Mutualism_(biology))

https://en.wikipedia.org/wiki/Symbiosis_in_lichens

<http://website.nbm-mnb.ca/mycologywebpages/NaturalHistoryOfFungi/Mycorrhizae.html>

<http://web.ccsu.edu/faculty/kyem/GEOG110/Ecosystem/THE%20ECOSYSTEM.htm>

http://www.davidmoore.org.uk/assets/mostly_mycology/diane_howarth/mycorrhizal%20types.htm

<http://www.drishtiias.com/upsc-exam-gs-resources-ECOLOGICAL-RELATIONSHIP>