

MOUNTAIN TOP UNIVERSITY

E-Courseware

SCHOOL OF BASIC AND

APPLIED SCIENCES

Mountain Top University

Kilometre 12, Lagos-Ibadan Expressway, MFM Prayer City, Ogun State.

PHONE: (+234)8053457707, (+234)7039395024, (+234) 8039505596

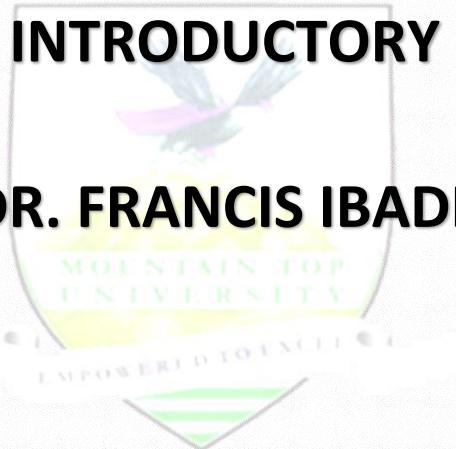
EMAIL: support@mtu.edu.ng

Website: www.mtu.edu.ng.

Published By:

Mountain Top University

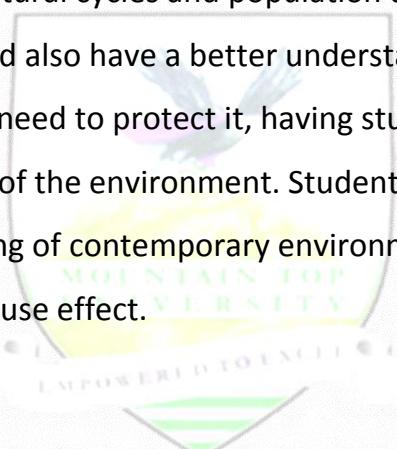
COURSE GUIDE



COURSE TITLE: BIO 202

COURSE CODE: INTRODUCTORY ECOLOGY

LECTURER(S): DR. FRANCIS IBADIN



COURSE OBJECTIVES

At the end of this course, students should be able to: understand the basic concept of ecology and the various aspects that are relevant in the study. Students would have studied the various types of habitats and how the various organisms within these habitats interact with one another and with the abiotic components of the environment. The various natural cycles and population dynamics would also have been studied. Students would also have a better understanding of the fragile nature of our environment and the need to protect it, having studied the various natural and man-made degradation of the environment. Students would also have a better knowledge and understanding of contemporary environmental issues including global warming and greenhouse effect.

COURSE CONTENTS

Lecture One:	Concept and Definition of Ecosystem	6
Lecture Two:	Ecology at Community Level	8
Lecture Three:	Ecological Classification of Habitat Types	11
Lecture Four:	Terrestrial and Aquatic Biomass	19
Lecture Five:	Biotic Components of Habitat	26
Lecture Six:	Dynamics of Population	30
Lecture Seven:	Factors of Communities	34

LECTURE 1

CONCEPTS AND DEFINITION OF ECOSYSTEMS

1.0 Introduction

This lecture focusses basic concept of ecology, and therefore serves to introduce the student to the knowledge of the fundamental units of any ecological system. Field observation will also be required in order for the good understanding of the subject matter.

Objectives

At the end of this lecture, students should be able to:

1. Understand the meaning of some of the basic terms used in ecology
2. Use their own nature surrounding as a larger classroom in the study
3. Understand the interactions that occur in their own natural environments

Pre-Test

1. Define ecology
2. What are ecological factors?
3. Mention the ecological factors that affect you most, and give reasons

CONTENT

1.1 Ecosystems

Ecosystem definition: An ecosystem is a natural system consisting of all plants, animals and microorganisms (biotic factors) in an area functioning together with all the non-living physical (abiotic) factors of the environment. It can also be regarded as a natural unit of both living and non-living components whose interactions results in a self-perpetuating system. Central to the ecosystem concept is the idea that living organisms are continually engaged in a set of relationships with every other element constituting the environment in which they exist.

The term ecosystem is generally understood as to the entire assemblage of organisms (plant, animal and other living beings) also referred to as a biotic community living together in a certain space within their environment, functioning as a loose unit. Together, these components and their interactions with and relationships to each other form a dynamic and complex new whole, functioning as an "ecological unit", with additional characteristics that can't be found in the individual components. Nor could any organism live completely on its own without involving any other species of organism.

1.2 Components of the ecosystem

Two major components

(a) Biotic components which comprises of living organisms

(b) Abiotic components which comprises the non-living physical and chemical environment

Other essential abiotic components of an ecosystem include energy, water, nitrogen and soil minerals. The energy required to perpetuate an ecosystem is naturally obtained primarily from the sun, through photosynthesis, a process that also captures carbon from the atmosphere. Animals feed on plants and on one another thereby playing an important role in the movement of matter and energy through the system. They also influence the quantity of

plant and microbial biomass present. By breaking down dead organic matter, decomposers release carbon back to the atmosphere and facilitate nutrient cycling by converting nutrients stored in dead biomass back to a form that can be readily used by plants and other microbes, thereby completing the cycle of life. The study of ecosystems helps us to understand two key processes, the flow of energy and the cycling of materials through biological channels. The largest ecosystem is the biosphere, the thin veneer of land, water and atmosphere that envelope the great mass of the planet and that supports life on earth.

There are certain internal and external factors that control ecosystems. Some of the external factors include climate, the parent material that forms the soil, and topography. Other factors include time and biota. Ecosystems are not as resilient as was once thought, and have been known to go through certain periods of disturbances and stress, sometimes due to natural or man-made activities. In some cases recovery from such activities have been swift, slow or even nearly impossible.

Post-Test

1. Mention two biotic and five abiotic factors in your immediate surrounding
2. State how these factors affect you directly or indirectly

Bibliography

<https://en.wikipedia.org/wiki/Ecology>

Cadogan, Alan and Best, Gerry. Environment and Ecology. UK Nelson Blackie 1992

Miller, G. Tyler, Spoolman, E. Scott. Living in the Environment: Concepts, Connections and Solutions. Sixteenth Edition. Australia Brooks/cole 2007

N. P. O. Green, G. W. Stout and D. J. Taylor (2010). Biological Science 1 & 2. Third Edition. Cambridge University Press, UK. 984p

S.T. Ramalingam (2013). Modern Biology. Sixth Edition. Africana First Publishers Plc, Nigeria. 573p

LECTURE 2

ECOLOGY AT COMMUNITY LEVEL

2.0 Introduction

This lecture teaches the student the definition of some of the basic terms used in ecology and the basic natural groups encountered in ecology. It also deals with the concept of environmental pollution, its causes and effects.

Objectives

At the end of this lecture, students should be able to:

1. Define some of the basic terms of natural grouping in ecology
2. Understand the process of pollution
3. Identify the various forms of pollution and pollutants.

Pre-Test

1. What are the basic forms of pollution in your environment?
2. Mention the pollutants responsible for the identified forms of pollution
3. In what way have you contributed to pollution in your environment, and how do you think it can be stopped or controlled?

CONTENT

2.1 Basic definitions and Pollution

A **community** is an assemblage of populations of different species of organisms occupying the same habitat, e.g. community of plants and animals in a pond or desert. Variety of a community is measured as species diversity. The population of species in a community interact with each other in many ways, the most prevalent of which are predation, parasitism and competition. Predators obtain energy and nutrient by killing and eating prey. Parasites derive similar benefits from their hosts but usually do not kill the hosts. Competition occurs when food or space are limited in supply and members of different species interfere with each other's use of their shared resources.

A **population** is the collection of individuals of the same species occupying a particular space and able to interbreed freely with one another when individuals of different sexes are brought together.

A **species** of animal may comprise a single cohesive population or may contain many geographically distinct populations, e.g. a population of Agama lizards in MTU campus. The whole human race, *Homo sapiens* comprising the black, Mongolian, red and white, is a population. A population of *Cercopithecus erythrogaster* (Monkeys).

Demes are members that can interbreed, and they share a common gene pool.

2.2 Pollution

Pollution is the contamination of a medium (air, water, soil) with impurities to a level that is detrimental to organisms or the balance of nature. To make foul, unclean, dirty; it can also be defined as any physical, chemical, or biological change that adversely affects the health, survival, or activities of living organisms or that alters the environment in undesirable ways.

Pollutants are contaminants that adversely alter the physical, chemical or biological properties of the environment. The term includes **nutrients, sediments, pathogens, toxic metals, carcinogens, oxygen-demanding materials** and all other harmful substances.

Two types of pollutants are known; biodegradable and non-biodegradable pollutants.

Biodegradable pollutants are those that can be decomposed by bacteria, hence could easily be removed from the environment e.g. sewage. **Sewage** is a water-carried waste, in solution that is intended to be removed from a community e.g. waste water from the kitchen sink and excrement from homes. **Non-biodegradable** are chemicals substances which cannot be broken down by bacteria, hence persists and accumulate in the environment e.g. heavy metals from industries, plastic and other man-made synthetic materials.

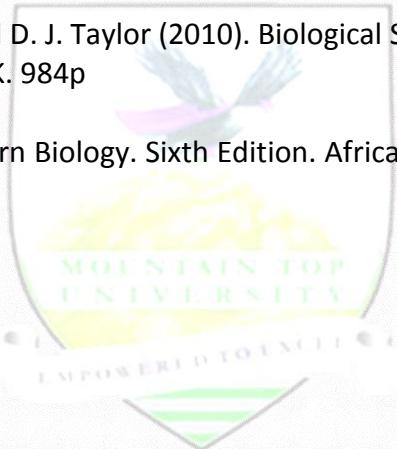
Burning of fossil fuels (coals, petroleum and natural gas) provide energy for home and industrial use results in the release of carbon oxides (CO & CO_2); hydrocarbons methane (CH_4) and benzene (C_6H_6); nitrogen oxides (nitric oxides – NO), nitrogen dioxide (NO_2) and nitrous oxide (N_2O); sulphur oxides (sulphur dioxide – SO_2 & sulphur trioxide – SO_3). These cause air pollution along with other substances like photochemical oxidants (ozone – O_3) and peroxyacetyl nitrates (PANS) organic halogens (chlorofluorocarbons – CFC) and halocarbons – $\text{C}_x\text{F}_x\text{Br}_x$) and aerosols i.e. suspended particles like dust, smoke, asbestos, fibres, metals and liquid droplets (sulphuric acids, oils, pesticides).

Waste gases like SO_2 and NO react with rain to form H_2SO_4 and NHO_3 in the atmosphere which mix with rain to give rise to acid rain that damages lakes, streams, forests, buildings, statues, etc. CO_2 and other gases e.g. methane, nitrous oxide and CFC in the atmosphere deplete the ozone layer and also increase absorption of infrared radiation from earth's surface and radiate about $\frac{1}{2}$ of it back to the earth, so warming the atmosphere. This phenomenon of heating due to differential transparency of the atmosphere to long and short wavelengths is called green-house effect. Ultimate consequences are sea level rise as the polar ice cap melts causing unprecedented flood. Depletion of the ozone layer increases the risk of skin cancer. Ozone from photochemical smog reduces oxygen carrying capacity of the blood. Carbon monoxide combines with hemoglobin to form a complex which reduces oxygen carrying capacity of the blood. Inorganic nitrogen fertilizers contribute to nutrient enrichment (inorganic nitrates) in water bodies. This encourages algal growth (eutrophication). Bacteria decay of the algae consumes dissolved oxygen in water thereby affecting respiration of fishes and other aquatic life. Untreated or partially treated sewage introduced into lakes and rivers will be decomposed by bacteria resulting in de-oxygenation and the release of toxic nitrogen substances which are toxic to aquatic animals.

Post-Test

1. Define the following terms
 - i. Ecosystem
 - ii. Biome
2. Mention 5 natural forms of pollution
3. Mention 3 types of CFCs

Bibliography


<https://en.wikipedia.org/wiki/Ecology>

Cadogan, Alan and Best, Gerry. Environment and Ecology. UK Nelson Blackie 1992

Miller, G. Tyler, Spoolman, E. Scott. Living in the Environment: Concepts, Connections and Solutions. Sixteenth Edition. Australia Brooks/cole 2007

N. P. O. Green, G. W. Stout and D. J. Taylor (2010). Biological Science 1 & 2. Third Edition. Cambridge University Press, UK. 984p

S.T. Ramalingam (2013). Modern Biology. Sixth Edition. Africana First Publishers Plc, Nigeria. 573p

LECTURE 3

ECOLOGICAL CLASSIFICATION OF HABITAT TYPES

3.0 Introduction

This lecture teaches the student the various types of habitats and the basic complexities associated with each of them. It also explains the basic subdivisions associated with each habitat, and the specific features that characterizes each habitat.

Objectives

At the end of this lecture, students should be able to:

1. What an ecological niche is and how the term affects or relates to them
2. Know the various ecosystems that exists, and the specific features related to each of them and what makes each one unique.
3. Learn the various features of the various zones observed in some of the ecosystem, especially the aquatic

Pre-Test

1. What is an ecological niche?
2. What is the difference between an ecological niche and a habitat?
3. Mention the types of Ecosystems present in your country.

CONTENT

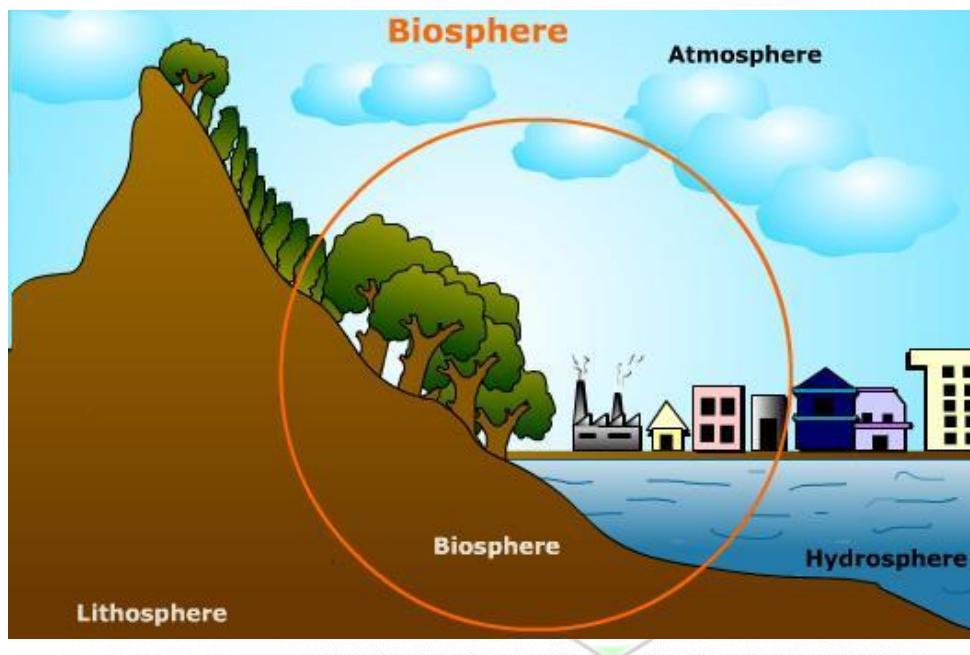
3.1 Basic definitions and Biosphere

The terrestrial and aquatic ecosystems are located within the biosphere

Habitat and environment are two words commonly used in everyday speech to indicate the location of living organisms. The habitat of an animal or an animal, you often hear people say, is where it lives; and its environment is its surroundings.

The word Habitat, in ecological study, does not denote a particular place, rather it denotes areas which sustain life, and which have similar physical or chemical constituents. In other words, habitat is used here as a collective noun. Hence, when we speak of marine habitat, we mean any water body with physical and chemical constituents of sea water. In this way we can identify three main habitats, (a) Marine habitat, (b) Freshwater habitat, and (c) Terrestrial habitat.

Each of these habitats in ecological language is a biota, and the word biosphere is used to describe all these habitat collectively, as comprising all the available habitable areas of the earth, be it sea, freshwater or land.


In everyday speech environment means surrounding, but in ecology the environment of an organism is described more precisely, firstly in terms of the physical nature of its habitat, called its abiotic environment, and secondly in terms of all other living organisms associated with it in that habitat, which constitutes its biotic environment. In short the environment is the sum total of all the external factors affecting an organism. If we consider a fish in a lake therefore, its habitat is freshwater, its abiotic environment consists of the physical and chemical features of freshwater, and its biotic environment consists of the plants and animals in the lake. Given an even wider meaning, environment includes the internal environment of

the organism, consisting primarily of its body fluids. When considering the surrounding of an organism, therefore, we have to bear in mind its abiotic, biotic, and internal environments.

The idea of niches can be further defined in terms of **Fundamental Niche** and **Realized Niche**. A species' **fundamental niche** is the full range of resources or habitat it could exploit if there were no competition with other species. A species' **realized niche** is the resources or habitat it actually uses, which may be much less than the fundamental niche.

There are three major types of habitats namely; Terrestrial, Freshwater and Marine Habitats, which are all located within the **Biosphere**. The marine and freshwater habitats are mainly aquatic.

The terrestrial and aquatic ecosystems are located within the **Biosphere**.

Source: <http://www.myassignmenthelp.net/biosphere-assignment-help>

The Biosphere – thin outer layer of the earth capable of supporting life. The non-living subdivisions of the biosphere include:

- Lithosphere** – is the rocky materials of the earth's outer shell and is the ultimate source of all mineral elements required by living organisms.
- Hydrosphere** – is the water on or near the earth's surface and it extends to the lithosphere and the atmosphere.
- Atmosphere** – gaseous components of the atmosphere. It extends to some 3500 km above the surface of the earth, but life is confined to the lowest 8 to 15 km (troposphere). The oxygen-ozone screening layer in the atmosphere is concentrated mostly between 20 and 25 km. The main gases present in the atmosphere are by volume, nitrogen – 78%; oxygen, 21%; argon, 0.93%; carbon dioxide, 0.03% and variable amount of water vapour.

3.2 Terrestrial Environment:

The terrestrial habitats are mainly land based biomes.

The geographical distribution (and productivity) of the various biomes is controlled primarily by the climatic variables like precipitation and temperature. Most of the classified biomes are identified by the dominant plants found in their communities.

Major Biomes

(i) Deserts:

Desert is a temperate or tropical biome arid region commonly occurring where there is less than 10 inches (<25cm) of precipitation per year, and high evaporation. Their vegetation is sparse, but it can be surprisingly diverse, and most desert plants and animals are highly adapted to survive long droughts, extreme heat, and often extreme cold.

(ii) Grasslands

Grasslands occur where there is enough rain to support grass but not enough for forests. There are two main divisions of grasslands, namely tropical grassland or savannas and the temperate grasslands.

Tropical grasslands (Savannas) - Tropical grasslands can occur in regions with as much as 47.2 in (120 cm) of rainfall per year, but under highly seasonal conditions with a pronounced dry season. Savannahs are dominated by grasses and other herbaceous plants, but they also have scattered shrub and tree sized woody plants, which form a very open canopy.

Temperature grasslands - These grasslands occur under temperate climatic regimes that are intermediate to those that support forest and desert. In the temperate zones, grasslands typically occur where rainfall is 9.9-24 in (25-60 cm) per year. Grasslands in North America are called **prairie**.

(iii) Forests

It is a type of biome which is dominated by trees, and also where other plants and animals live. The plants in forests provide shade and protection to many different types of animals. Different types of forest are:

Deciduous forest - These are forests in cool rainy areas, they can be found in the eastern part of the United States and Canada, most of Europe and parts of China and Japan. Deciduous trees shed their leaves each autumn and winter and re-grow them in the springtime.

Coniferous forest (evergreen) - Coniferous forests are made up mainly of cone-bearing or coniferous trees. The leaves of these trees are either small and needle-like or scale-like and most stay green all year around (evergreen).

Rainforest - The reason it is called a "rainforest" is because of the high amount of rainfall it gets per year. The rain forest has a constant temperature with very high humidity.

Tropical rainforests are characterized by a warm and wet climate with no substantial dry season. Mean monthly temperatures exceed 18 °C (64 °F) during all months of the year. Average annual rainfall can be higher than 380 cm (150 in). Rainforests can be found in locations like Africa, Southeast Asia, Papua New Guinea, Sri Lanka, etc.

Temperate rainforests only occur in few regions around the world. Temperate rainforests are rainforests in temperate regions. They occur in North America, Europe, East Asia, South America and also Australia and New Zealand.

(iv) Tundra (Mountain Ecosystems)

Tundra, a treeless landscape occurs at high latitudes or on mountaintops, has a growing season of only two to three months, and it may have frost any month of the year. Mosses and lichens tend to dominate the vegetation. Migratory musk-ox, caribou, or alpine mountain sheep and mountain goats live on the vegetation.

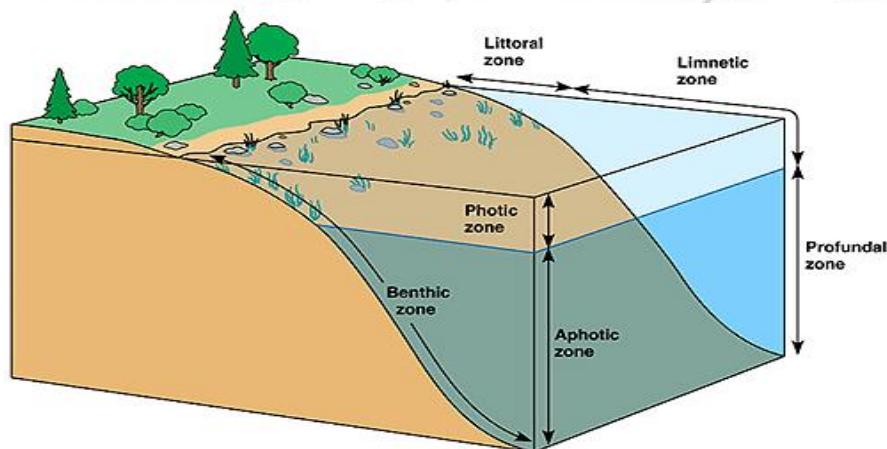
3.3 The freshwater habitat:

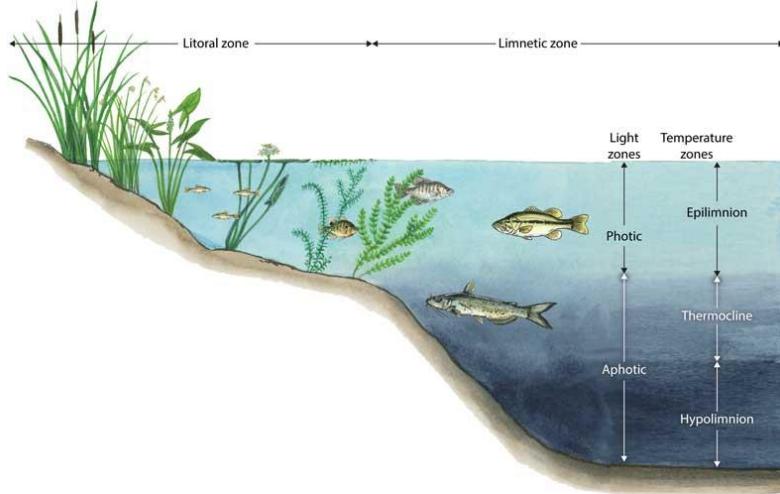
Freshwater is defined as having a considerably low salt concentration (less than 0.5 parts per thousand). They are inland bodies of water that constitute 2.5% of all the water in the world. Freshwater can be divided into two main groups, namely the lentic (standing) and the lotic (running) water bodies.

The lentic water bodies are those that are relatively still, they are generally localized in a basin that is surrounded by land, although limited movement can occur as a result of wind action e.g. Lakes Ponds, Pot holes etc.

The lotic water bodies are those in constant flow, some examples are Rivers, Streams, etc. They have high velocity water flow and a high oxygen concentration.

Some of the various types of freshwater under these two groups are described below:


(a) Ponds and lakes


Ponds are generally considered to be small temporary or permanent bodies of water shallow enough for rooted plants to grow over most of the bottom. **Lakes** are inland depressions that hold standing fresh water year-round.

Lakes and ponds are divided into three different “zones” which are usually determined by depth and distance from the shoreline. The zones are:

- (i) **Littoral Zone:** - The topmost zone near the shore of a lake or pond is the littoral zone
- (ii) **Limnetic Zone:** - The near surface open water surrounded by the littoral zone is the limnetic zone.
- (iii) **The Profundal Zone:** - This zone is much colder and denser than the other two. Little light penetrates all the way through the limnetic zone into the profundal zone

Temperature varies in ponds and lakes seasonally. Most lakes (deep ones) have what is referred to as thermal stratification, leading to the formation of three (3) temperature layers. There is the **epilimnion layer** at the top with warmer temperatures, while the colder temperature **hypolimnion layer** is at the bottom, and the **thermocline layer (mesolimnion)** in between them.

Source: <https://www.youtube.com/watch?v=wgGS-PTAg7A>

(b) Streams and Rivers

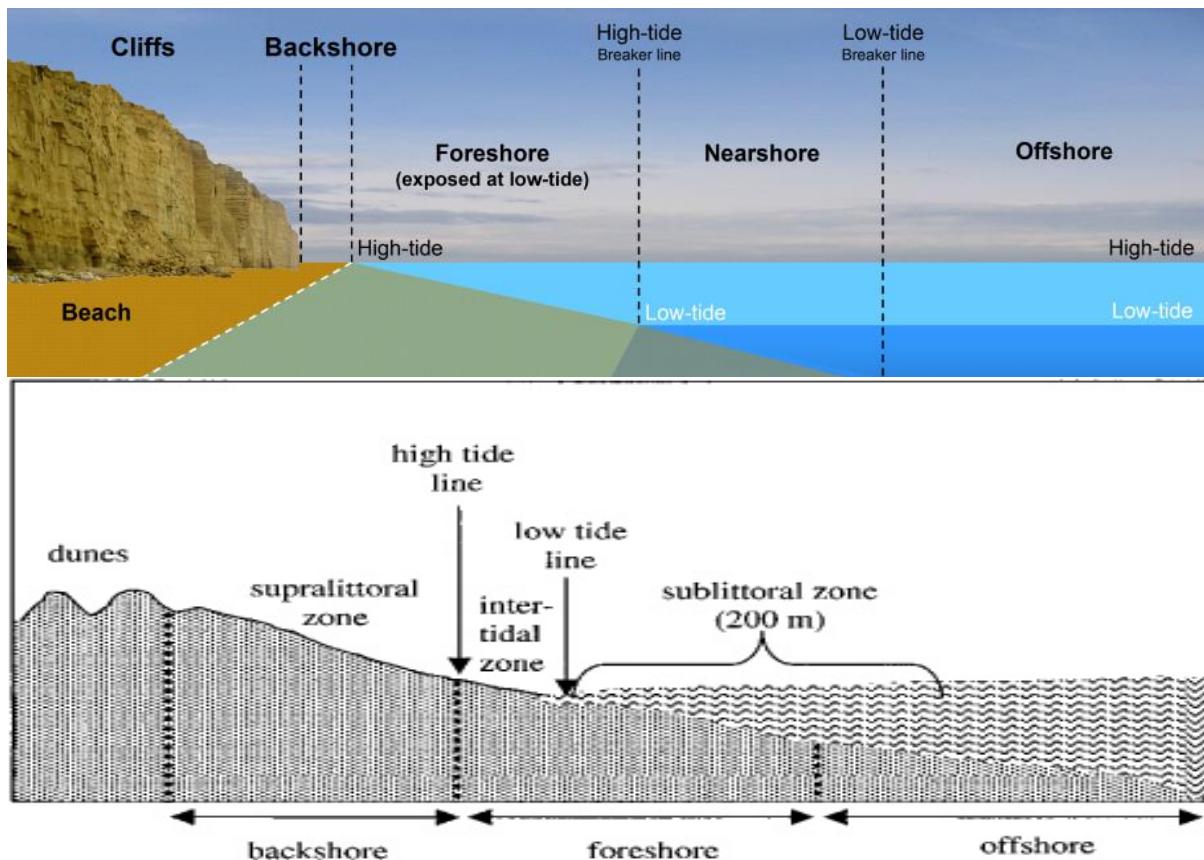
These are bodies of water are always in constant motion. Streams are generally shallow when compared with rivers, and sometimes one can even walk across them if they are not so deep and there is no strong water current.

(c) Wetlands

Wetlands are ecosystems of several types in which rooted vegetation is surrounded by standing water during part of the year. Other terms for wetland include **marsh (wetlands without trees)**, bog, flood plain, prairie pothole and **swamp (wetlands with trees)**. **Mangroves** are trees that grow in the coastal intertidal zone (salt water), with low oxygen soil.

3.4 Marine Habitat:

Together, the oceans contain more than 97% of all liquid water in the world. Oceans are too salty for most human uses, but they contain 90% of the world's living biomass.


Their salt content is considerably higher than of freshwater habitats (higher than 35 parts per thousand).

The marine habitat can be studies in terms of horizontal and vertical zones, namely:

I. Horizontal zones

The horizontal zones of the ocean are:

(a) Coastal Zone: - It is made up of the **littoral** region which is where the sea meets the land; it is the richest of all marine environment but the harshest. The animals that live there are subjected to pounding, surf, sun, wind, rain, extreme temperature fluctuations, erosion and sedimentation. The animals found there include barnacles, snails, limpet, mussels, sea star etc. This zone consists of three subzones called the supralittoral zone, the intertidal zone and the sublittoral zone.

Source: <http://www.discoveringfossils.co.uk/coastlines.htm>

The **Supralittoral zone** is only underwater during storms, and is located between the high-tide line and dry land. It receives splash of water especially if the beach is rocky.

The **Intertidal zone** is located between high and low tides.

The **Sublittoral zone** is always underwater and is below the low tide line. This zone extends all the way to where the continental shelf drops off into the abyssal plane.

(b) Pelagic Zone: - located seaward of the coastal zone's low-tide mark, this contains the vast open waters of the ocean. Everything except areas near the coast and the sea floor is called the pelagic zone. Two subdivisions are recognized:

i. **Neretic Zone:** the water overlying the continental shelf. With the exception of Antarctica, these waters usually extend to a depth of 600 ft. Light penetrates the entire water column.

ii. **Oceanic Zone:** It extends from the edge of the continental shelf, over the continental slope, and over ocean floor. It is characterized by darkness and tremendous pressure.

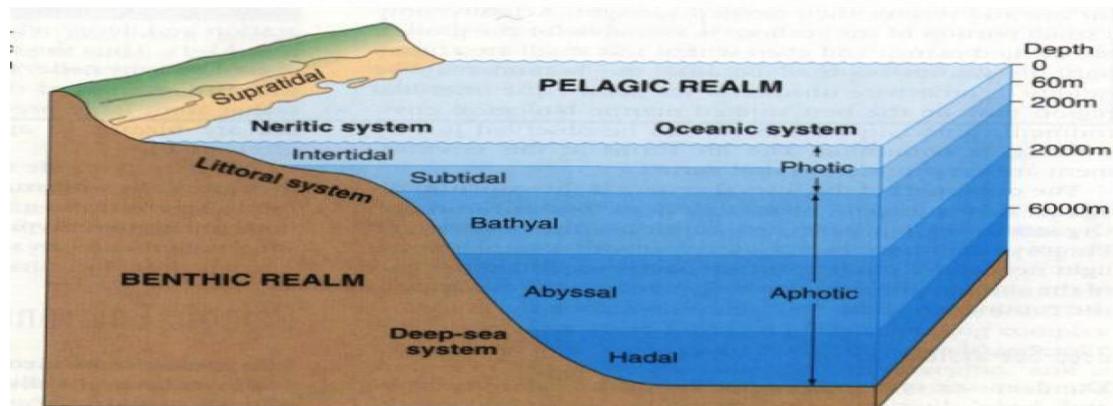
ii. Vertical zones.

(a) Neustic Zone: the thin film formed by surface tension at the surface of the water

(b) Euphotic Zone (epipelagic zone): It is home to the greatest biodiversity in the sea, largely because of the availability of sunlight that allows photosynthesis.

(c) Aphotic Zone: this is the remainder of the water column, and is below the euphotic zone. Food chains usually begin with detritus or living algae and bacteria sinking from above. This zone is further subdivided by depth as follows:

i. **Mesopelagic zone:** It ranges from a depth of about 500 to 3,280 ft. below the sea surface. This zone is a twilight zone where some light filters through but does not reach a level of brightness enough for photosynthesis to occur.


ii. **Bathypelagic zone:** this zone ranges from a distance of 3,280 to 13,000 ft., and is completely dark. Bioluminescent organisms, some of the strangest marine creatures of the

deep live here. Plants are non-existent in the bathypelagic zone. The giant squid is a resident of the bathypelagic zone and serve as a food source for deep-diving sperm whales.

iii. Abyssopelagic zone: Ranges from about 13,000 to 20,000 ft. below the sea surface. Most animals in the abyssopelagic zone are blind and colourless due to the complete lack of light. The name, "abyssopelagic" comes from the Greek meaning "bottomless abyss".

iv. Hadal zone: 20,000 to 35,000 ft. below the sea surface. The name is from the Greek "Hades", or the Greek underworld.

III. Benthic Zone: This zone contains all the habitats of the sea bottom, whether in coastal, continental shelf, or deep sea environments. Organisms may live within the bottom material or on its surface.

Source: <https://www.howtosmile.org/resource/smile-000-000-003-763>

3.5 Brackish water:

This environment is actually a meeting point between the fresh water and the marine water habitat. It occurs in places like **estuaries**, where rivers drain into the ocean, where there is therefore a mixture of fresh and marine water. The salt content of the water is normally higher than that of fresh water and lower than that of marine water due to mixing of both waters (between 0.5 to 35 parts per thousand). The plant and animal species found in this environment are adapted to tolerate a wider range of salinity. Some of the animals include some species of prawns, oyster, mud crabs, birds etc.

Post-Test

1. What factor differentiates the basic types of aquatic habitats?
2. What is the difference between the ocean and the sea?
3. What are the two basic factors that controls terrestrial biomes?

Bibliography

<http://www.discoveringfossils.co.uk/coastlines.htm>

<https://en.wikipedia.org/wiki/Ecology>

<https://www.howtosmile.org/resource/smile-000-000-003-763>

<http://www.myassignmenthelp.net/biosphere-assignment-help>

<http://pupaemarineblog.blogspot.com.ng/2011/06/4-two-primary-ocean-zones.html>

<https://www.youtube.com/watch?v=wgGS-PTAg7A>

Cadogan, Alan and Best, Gerry. Environment and Ecology. UK Nelson Blackie 1992

Miller, G. Tyler, Spoolman, E. Scott. Living in the Environment: Concepts, Connections and Solutions. Sixteenth Edition. Australia Brooks/cole 2007

N. P. O. Green, G. W. Stout and D. J. Taylor (2010). Biological Science 1 & 2. Third Edition. Cambridge University Press, UK. 984p

S.T. Ramalingam (2013). Modern Biology. Sixth Edition. Africana First Publishers Plc, Nigeria. 573p

LECTURE 4

TERRESTRIAL AND AQUATIC HABITAT BIOMASS

4.0 Introduction

This lecture teaches the student the concept of food chain, food web, trophic pyramid etc., and the flow of energy and biomass within a living system. It also teaches students the interrelationships between various organisms and their interdependence on one another for their sustenance.

Objectives

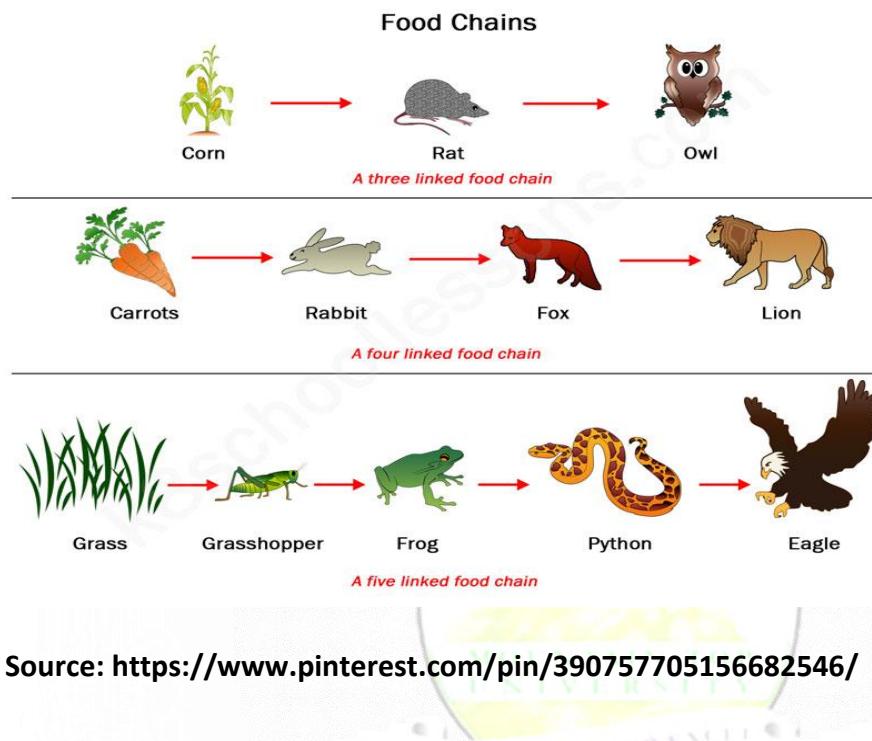
At the end of this lecture, students should be able to:

1. The food chains, food webs and trophic levels within their environment
2. Understand the interdependence of different organisms on one another
3. Understand the major roles played by various organisms in the ecosystem

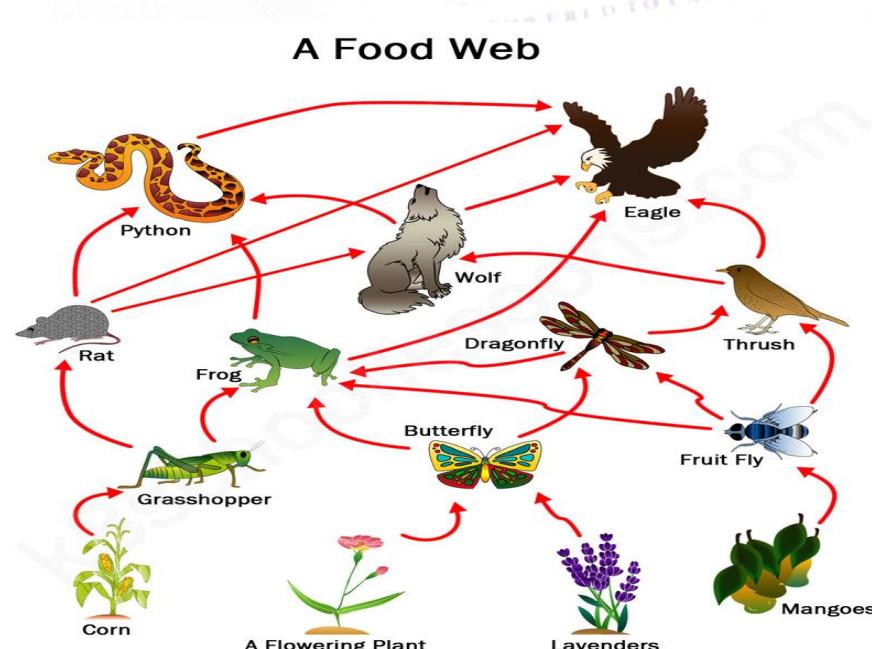
Pre-Test

1. What is the basic ecological factor on which organisms lives depends directly or indirectly?
2. Give reasons for your answer to question 1
3. What are the food chains and food webs in your environment?

CONTENT


4.1 Food Chains, Food Webs, and Trophic Levels

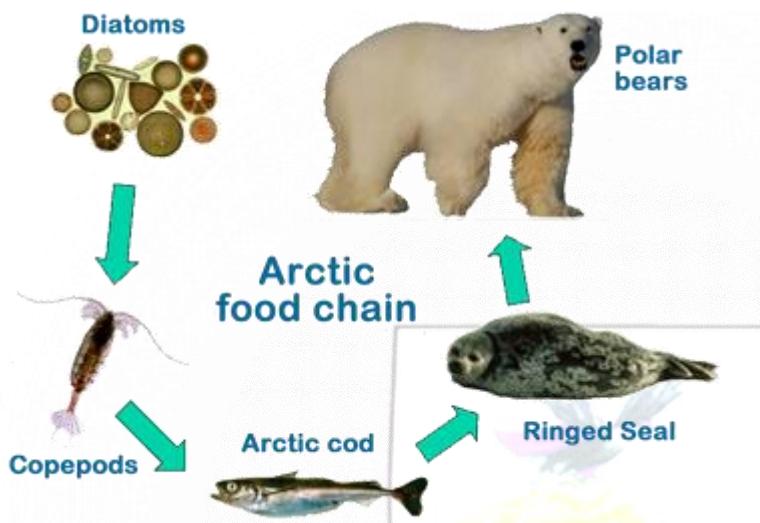
Photosynthetic organisms, mainly green plants and algae, are known as **producers**; with photosynthesis (and rarely chemosynthesis, being the base of all ecosystems). One important property of an ecosystem is its productivity, the amount of biomass (biological material) produced in a given area during a given period of time. Photosynthesis is described as primary productivity because it is the basis for almost all other growth in an ecosystem. Manufacture of biomass by organisms that eat plants is termed secondary productivity. A given ecosystem may have very high total productivity, but if decomposers decompose organic material as rapidly as it is formed, the net primary productivity will be low.


Biomass is the total mass or weight of living organisms in a given population or area at a given time. Biomass can refer to species biomass, which is the mass of one or more species, or to community biomass, which is the mass of all the species in the community. It can include microorganisms, plants or animals. The mass can be expressed as the average mass per unit area, or as the total mass in the community. Sometimes, the biomass is regarded as the natural mass of organisms, *in situ*, just as they are. For example, in salmon fishery, the salmon biomass might be regarded as the total wet weight the salmon would have if they were taken out of the water. In other contexts, biomass can be measured in terms of the dried organic mass, so perhaps only 30% of the total weight might count, the rest being water. For other purpose, only biological tissues count, teeth, bones and shell are excluded. In the study of biomass is relevant for us to always trace whatever have eaten to its very photosynthetic source. If you have eaten an egg, it can be traced to a chicken which in turn ate a corn. This is an example of a **food chain**; a linked feeding series. There is however a more complex food chain involving man, a chicken, a corn plant, and a grasshopper. The chicken

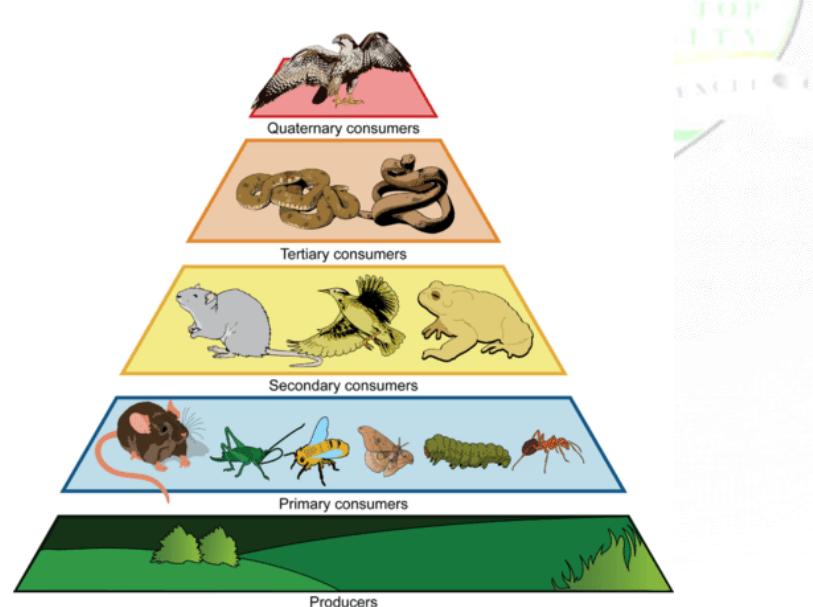
could eat grasshoppers that had eaten the corn leaves. Man can also eat the grasshopper directly, or also eat corn directly (a short food chain). Humans have several options of fitting into the food web).

Some consumers are known to feed on a single species, while most consumers have multiple sources of food. Similarly some species are prey to a single predator while others are beset by many predators and parasites. In this way individual food chains get interconnected to form a food web.

Source: <https://www.pinterest.com/pin/390757705156682546/>



Source: <https://k8schoollessons.com/food-chains-food-webs/>


An organism's feeding status in an ecosystem can be expressed as its **trophic level** (from the Greek word *trophe*, food). In our first example, the corn plant is at the producer level; it

transforms solar energy into chemical energy, producing food molecules. Other organisms in the ecosystem are consumers of the chemical energy harnessed by the producers. An organism that eats producers is a primary consumer. An organism that eats primary consumers is a secondary consumer, which may in turn be eaten by a tertiary consumer, and so on. Most terrestrial food chains are relatively short (seeds → mouse → owl), but aquatic food chains may be quite long

(microscopic algae → copepod → minnow → crayfish → bass → osprey). The length of a food chain also may reflect the physical characteristics of a particular ecosystem. A harsh arctic landscape has a much shorter food chain than a temperate or tropical one.

Source: <http://speechfoodie.com/polar-bear-food-chain-facts/>

Trophic levels

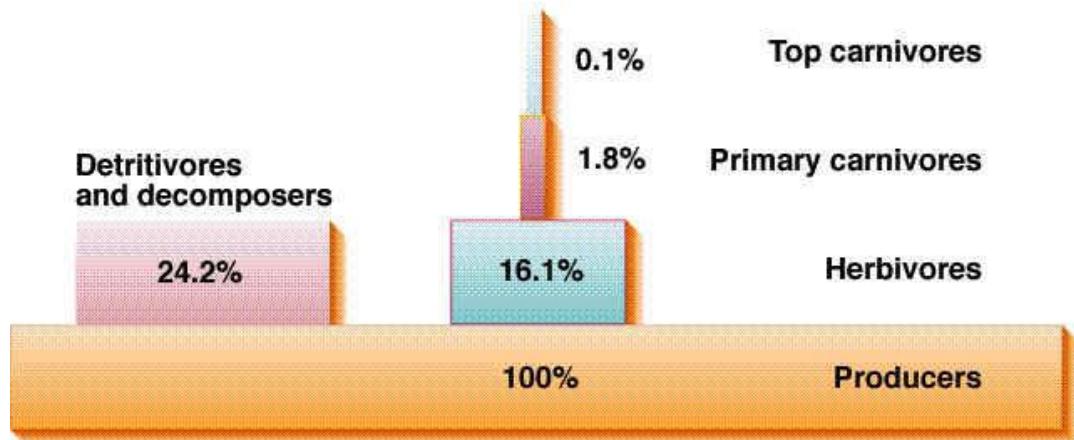
Source: <https://www.ck12.org/biology/trophic-level/lesson/Trophic-Levels-BIO/>

Trophic Level	Where It Gets Food	Example
1st Trophic Level: Producer	Makes its own food	Plants make food
2nd Trophic Level: Primary Consumer	Consumes producers	Mice eat plant seeds
3rd Trophic Level: Secondary Consumer	Consumes primary consumers	Snakes eat mice
4th Trophic Level: Tertiary Consumer	Consumes secondary consumers	Hawks eat snakes

Source: <https://www.ck12.org/biology/trophic-level/lesson/Trophic-Levels-BIO/>

4.2 Feeding Habits

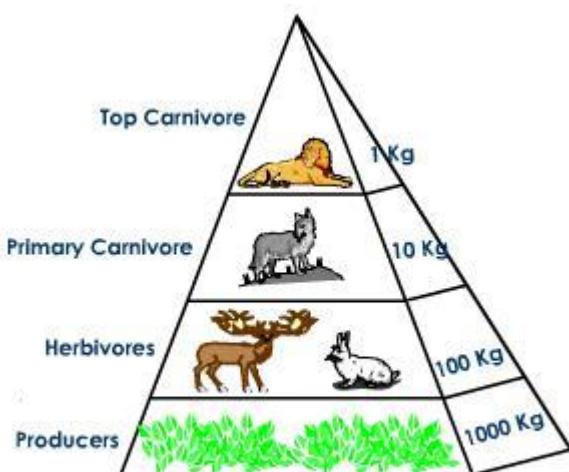
Organisms can be identified both by the trophic level at which they feed and by the kinds of food they eat.


Herbivores are plant eaters, **carnivores** and flesh eaters, and **omnivores** eat both plant and animal matter. Man is a natural omnivore, by history and by habit. Tooth structure is an important clue to understanding animal food preferences, and humans are no exception. Our teeth are suited for an omnivorous diet, with a combination of cutting and crushing surfaces that are not highly adapted for one specific kind of food, as are the teeth of a wolf (carnivore) or a horse (herbivore).

One of the important trophic levels is that occupied by many kinds of organisms that remove and recycle the dead bodies and waste products of others. **Scavengers** such as crows, jackals and vultures clean up dead carcasses of larger animals. **Detritivores** such as ants and beetles consume litter, debris, and dung, while decomposer organisms such as fungi and bacteria complete the final breakdown and recycling of organic materials. It could be argued that these microorganisms are second in importance only to producers, because without their activity nutrients would remain locked up in the organic compounds of dead organisms and discarded body wastes, rather than being made available to successive generations of organisms.

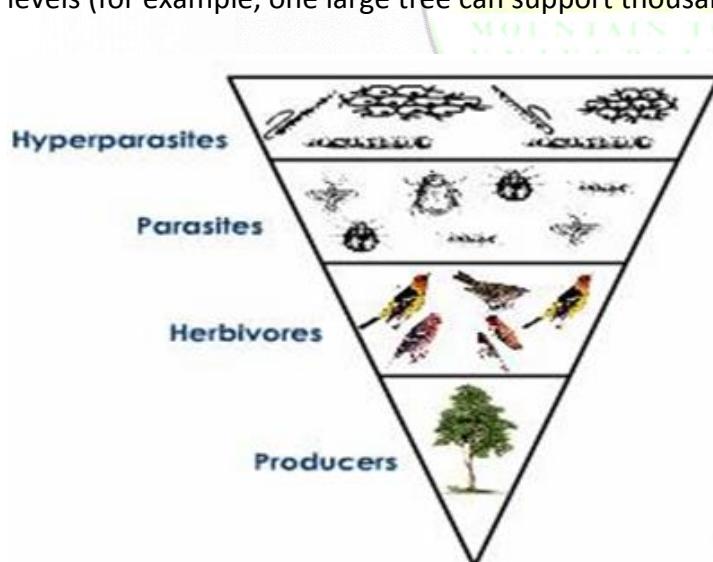
4.3 Ecological Pyramids

If we arrange the organisms in a food chain according to trophic levels, they often form a pyramid with a broad base representing primary producers and only a few individuals in the highest trophic levels. This pyramid arrangement is especially true if we look at the energy content of an ecosystem.


Energy Pyramid (Florida)

Source: http://faculty.southwest.tn.edu/rburkett/es%20-%20understanding_the_environment.htm

True to the second principle of thermodynamics, less food is available to the top trophic levels than is available to preceding levels. For example, it takes a huge number of plants to support a modest colony of grazers such as prairie dogs. Several colonies of prairie dogs, in turn might be required to feed a single Wolfe. And a very large top carnivore like a tiger may need a home range of hundreds of square kilometers to survive.


Why is there so much less energy in each successive level? In the first place, some of the food that organisms eat is undigested and does not provide usable energy. Much of the energy that is absorbed is used in the daily processes of living or lost as heat when it is transformed from one form to another and thus is not stored as biomass that can be eaten. Furthermore predators do not operate at 100% efficiency. If there were enough foxes to catch all the rabbits available in the summer when supply is abundant, there would be too many foxes in the middle of the winter when rabbits are scarce. A general rule of thumb is that only about 10% of the energy in one consumer level is represented in the next higher level. The amount of energy available is often expressed in biomass. For example, it generally takes about 100 kg of clover to make 10 kg of rabbit and 10 kg of rabbit to make 1 kg of fox.

Upright Pyramid of biomass in a Terrestrial Ecosystem

Source: <https://www.pinterest.com/pin/57983913927948189/>

The total number of organisms and the total amount of biomass in each successive trophic level of an ecosystem also may form pyramids similar to those describing energy content. The relationship between biomass and numbers is not as dependable as energy, however. The biomass pyramid, for instance, can be inverted by periodic fluctuations in producer populations (for example, low plant and algal biomass present during winter in temperate aquatic ecosystems). The numbers pyramid also can be inverted. One pig can support numerous tapeworms, for example. Numbers inversion also occurs at lower trophic levels (for example, one large tree can support thousands of caterpillars).

Inverted pyramid of number

Source: <https://biology.tutorvista.com/ecology/ecological-pyramid.html>

Post-Test

1. What factor differentiates the basic types of aquatic habitats?
2. What is the difference between the ocean and the sea?
3. What are the two basic factors that control terrestrial biomes?

Bibliography

<https://biology.tutorvista.com/ecology/ecological-pyramid.html>

https://en.wikipedia.org/wiki/Trophic_level

http://faculty.southwest.tn.edu/rburkett/es%20-%20understanding_the_environment.htm

<https://www.ck12.org/biology/trophic-level/lesson/Trophic-Levels-BIO/>

<https://k8schoollessons.com/food-chains-food-webs/>

Source: <https://www.pinterest.com/pin/390757705156682546/>

<https://www.pinterest.com/pin/57983913927948189/>

<http://speechfoodie.com/polar-bear-food-chain-facts/>

Cadogan, Alan and Best, Gerry. Environment and Ecology. UK Nelson Blackie 1992

Miller, G. Tyler, Spoolman, E. Scott. Living in the Environment: Concepts, Connections and Solutions. Sixteenth Edition. Australia Brooks/cole 2007

N. P. O. Green, G. W. Stout and D. J. Taylor (2010). Biological Science 1 & 2. Third Edition. Cambridge University Press, UK. 984p

S.T. Ramalingam (2013). Modern Biology. Sixth Edition. Africana First Publishers Plc, Nigeria. 573p

LECTURE 5

SPECIFIC FEATURES OF AQUATIC AND TERRESTRIAL HABITAT

5.0 Introduction

This lecture teaches the student the concept of ecological factors, both in the terrestrial and aquatic habitats and the instrument / procedures for measuring each. It also highlight the relevance of each of the aforementioned ecological factors in the ecosystem and how the effects living organisms, and also how they are interrelated.

Objectives

At the end of this lecture, students should be able to:

1. How does rain or moisture affect the activities of termites?
2. What is humidity and relative humidity?
3. What is the relationship between humidity and temperature?

Pre-Test

1. When you stand at a considerable distance from a river mention that factors that would determine the colour that the water body would appear to you
2. Describe how you would measure the turbidity of a lotic habitat in situ
3. Describe the process of measurement of the transparency of the same water body in situ

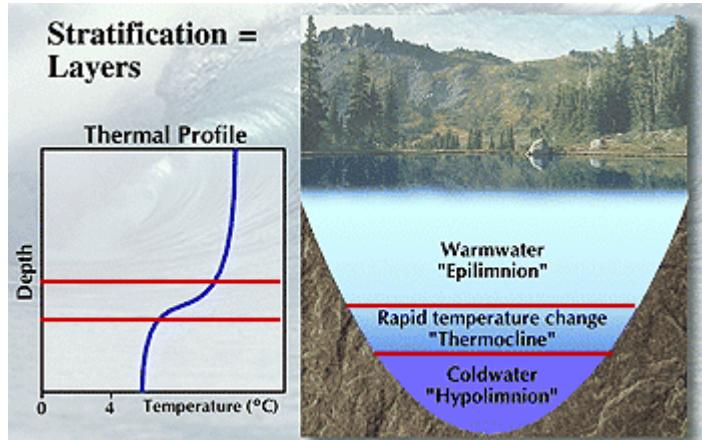
CONTENT

5.1 Ecological Factors

Any factor which are liable to cause changes in a habitat are called ecological factors. For each of the different habitats, the important factors differ, but there are a number of ecological factors which are common to all. They will be considered first.

5.2 Ecological factors common to all habitats

Rainfall


The direct effect of rainfall is that it soaks the soil, after the soil has become saturated, the excess water flows into streams, rivers, lakes, lagoons, and thence into the sea. For life in freshwater habitat, rainfall is of utmost importance. Without rain the body of water gradually dries up, and only the lung fish and some small invertebrates have developed means of survival when this happens. Terrestrial habitats too are greatly affected by rain, and although water in the soil is usually primarily associated with plants, it is also important for most animals. It should be remembered that certain animals, including almost all amphibian, are tied to water for their reproduction. Many forest and grassland animals must go to streams, rivers and water holes to drink; and certain insects like termite require a rain-soaked soil before they can start their new colonies.

Measurement of rainfall is with a **rain gauge**, while measurement of water level in a standing or running water is with a **depth gauge**.

Temperature

Temperatures of 30°C in summer and below freezing point in winter are commonplace in temperate regions. Although temperature variation in tropical waters is not so pronounced, it would be wrong to suppose that there is no seasonal variation worth considering. We also have seasonal and diurnal variation in air and water temperature during dry and rainy seasons. Another important temperature variation in aquatic habitats is a vertical one,

temperatures tending to fall with depth. In lakes, it is quite clear that there is a marked difference between the temperature at the surface and at the bottom. More important is that the fall is not uniform, but there is a sharp fall at a depth of about 2 meters in shallow lakes, so that there are two bodies of water, the one above of higher temperature and the one below.

Source: <http://www.aquatic.uoguelph.ca/lakes/season/seasnfrm.htm>

The upper water is called the **epilimnion** and the lower one the **hypolimnion**; the narrow zone between them is the **thermocline**. This is a very important phenomenon in aquatic biology, occurring both in marine and freshwater habitat, not only in tropical water but also in temperate waters during the warm summer months

Winds

For both aquatic and terrestrial habitats, winds are an important climatic factor. Apart from the effects of wind on stratified water in lakes, they also play a part in the creation of water currents and waves, which are in turn important ecological factors in aquatic habitats. In terrestrial habitats such as mountain zones, winds are also important.

Lights

This is a factor of prime importance in plant ecology; because without light the fundamental process of photosynthesis cannot take place. Since animals eventually depends on plants for all their food, light is equally important to them. Some animals feed and are more active in daylight and rest at night, whilst others, particularly many carnivorous ones, especially mammals, do the reverse.

Pressure

The pressure of the atmosphere is reduced as we ascend from sea level, so that in mountain areas pressure is relatively less than in lowlands. In oceans and deep freshwater habitats, the pressure increases at a rate of one atmosphere (1.03 kg/m^3) for every 10 meters or so increase in depth. The measurement of atmospheric pressure by a **barometer**. Below water surface, special **pressure gauges** are used.

Hydrogen ion concentration (pH)

A measure of the hydrogen ion concentration affords a measure of the acidity or alkalinity of the water in aquatic habitats, or the soil in terrestrial habitats, pH is closely related to the amount of carbonate present, because the carbonate act as a buffer tending to neutralize any acidity. When enough carbonates are available, the pH tends to be neutral, with a value of approximately pH 7.0; and when no carbonates are available as buffering material the medium tends to be acid, with values less than pH 7.0.

5.3 Aquatic Ecological factors

In addition to the physical factors listed above, there are a number of ecological factors which apply only to aquatic habitats, and these will be considered

Salinity

Salinity is the measure of the amount of dissolved salts in the water. The importance of salinity is in its relation to the maintenance of osmotic balance by aquatic animals. Salinity influences the type of organisms that live in a water body. As well, salinity has an influence of the kind of fauna that grow either in a body of water or on land fed by water. In general, the range of salinity in the oceans does not raise problems for most marine forms; but the sudden changes in the brackish water zone and lagoons create particular problems.

Density

The density and viscosity of a medium are factors of great biological significance in relation to the movement of organisms in it. The density of pure freshwater is 1.00 and the density of sea water of salinity 35‰ at atmospheric pressure and 0°C is about 1.028. The specific gravity of most soft tissues is close to this, and in the open ocean it is doubtful whether the distribution of any organisms are limited by this factor. Measurement of density is done with the aid of a hydrometer.

Transparency and turbidity

The transparency of water is another important factor, since it determines the depth to which light, essential for photosynthesis, can penetrate. It varies directly with rainfall in the freshwater habitat, transparency falling in the freshwater habitat, transparency falling in the rainy season when a lot of salt and debris are washed from the soil by rainwater.

The measurement of transparency is carried out using a weighted disc about 10 to 15 cm in diameter, called a **Secchi disc**. **Turbidity** is the presence of suspended and dissolved solids in a water body. An increase in transparency leads to a decrease in turbidity and vice versa.

Currents

Water currents which are a feature of aquatic habitats may originate in a number of ways. In lotic freshwater, rainfall plays an important part, causing fast currents during the rainy season when the river is flooding, compared with the trickle of slowly moving water during the dry season. Currents in lentic freshwater and the sea, however, are not due to rainfall but mainly due to temperature difference between parts of the water body in question, thus setting up convection currents.

Dissolved gases

All aquatic animals require oxygen in solution and the amount available is an important ecological factor. Unlike the atmosphere where the amount of the different gases are constant under normal conditions, there is a great deal of variation in the amount of gases dissolved in water.

Tides and waves

Although waves and tides may be associated, they are two different things. If you go to a coastal city like Lagos and mark the water level against a jetty (a place where boats come together) or concrete pillar, and you return in about 6 hours, you will find that the level has either increased or decreased, as regards your initial marking. The level of water in the sea or lagoon is changing all the time; and **it is this continuous diurnal variation in water level that is referred to as tide**. An instrument which continuously records the variation in tide level is a **tide gauge**.

Unlike the tide, **wave action** is difficult to define or measure as an ecological factor. Nevertheless, it is known that waves are produced by winds, and their height and period depends on the velocity of the wind, its duration, and the distance over which it is operating.

5.4 Terrestrial Ecological Factors

There are a number of ecological factors which operate only on land. These factors, most of which are associated with the soil, are called **edaphic factors** and are of great significance in plant ecology, since plants are the only sessile land organisms. Soil varies greatly in **chemical composition**, its **physical composition**, its **moisture content**, and its **thickness**; and these constitute edaphic factors. Thus variability is reflected in the type and richness of plant life which it supports. Then nature of plant life in turn affects the animal life.

One other important ecological factor which operates only on terrestrial habitat is **relative humidity**. Which is the **measure of the amount of water in the atmosphere**. Relative humidity varies with temperature and wind, and its measurement is by the use of a variety of **hygrometers**.

Finally, a variety of **topographic factors** may affect the life of animals in a terrestrial habitat; for example an area may be hilly or flat, it may be poorly drained or well drained, it may include a ravine or highly eroded areas.

5.5 Biotic Components of Habitat

Biotic components are the living things that shape an ecosystem.

Biotic components usually include:

- Producers, i.e. autotrophs: e.g. plants, convert the energy [from photosynthesis (the transfer of sunlight, water, and carbon dioxide into energy), or other sources such as hydrothermal vents] into food.
- Consumers, i.e. heterotrophs: e.g. animals, depend upon producers (occasionally other consumers) for food.
- Detritivores such as ants and beetles consume litter, debris, and dung.
- Decomposers, e.g. fungi and bacteria, break down chemicals from producers and consumers (usually dead) into simpler form which can be reused.

A **biotic factor** is any living component that affects the population of another organism, or the environment. This includes animals that consume the organism, and the living food that the organism consumes. Biotic factors also include human influence, pathogens, and disease outbreaks. Each biotic factor needs energy to do work and food for proper growth.

Biotic components are contrasted to **abiotic components**, which are non-living components that influence population size and the environment. Examples of abiotic factors are: temperature, light intensity, moisture and water levels, air currents, carbon dioxide levels and the pH of water and soil. An additional abiotic factor include minerals as they are nonliving and make up the composition of the soil.

Post-Test

1. When you stand at a considerable distance from a river mention that factors that would determine the colour that the water body would appear to you
2. Describe how you would measure the turbidity of a lotic habitat in situ
3. Describe the process of measurement of the transparency of the same water body in situ

Bibliography

<http://www.aquatic.uoguelph.ca/lakes/season/seasnfrm.htm>

<http://www.environmentalpollution.in/environment/5-ecological-factors-that-constitute-the-environment-of-an-organism/178>

https://en.wikipedia.org/wiki/Environmental_factor

<https://scienking.com/tools-measuring-abiotic-ecological-factors-6853255.html>

Cadogan, Alan and Best, Gerry. Environment and Ecology. UK Nelson Blackie 1992

Miller, G. Tyler, Spoolman, E. Scott. Living in the Environment: Concepts, Connections and Solutions. Sixteenth Edition. Australia Brooks/cole 2007

N. P. O. Green, G. W. Stout and D. J. Taylor (2010). Biological Science 1 & 2. Third Edition. Cambridge University Press, UK. 984p

S.T. Ramalingam (2013). Modern Biology. Sixth Edition. Africana First Publishers Plc, Nigeria. 573p

LECTURE 6

DYNAMICS OF POPULATION

6.0 Introduction

This lecture teaches the student the concept of population in biology, and the factors that influence and determine the dynamics of population.

Objectives

At the end of this lecture, students should be able to:

4. Have a fore knowledge of the concept of population in biology
5. Know The factors that determine the dynamics of population
6. Learn effects of population on the biosphere

Pre-Test

4. What do you understand by the term “population”?
5. Has there been a remarkable increase in population in your environment over the years?
6. What can you attribute to the increase or decrease?

CONTENT

6.1 Characteristics of Populations

1 Size – is the density or the number of individuals occupying a known area or volume of the habitat

2 Birth or reproductive rate (Nativity) – leads to increase in population, which can also occur through immigration

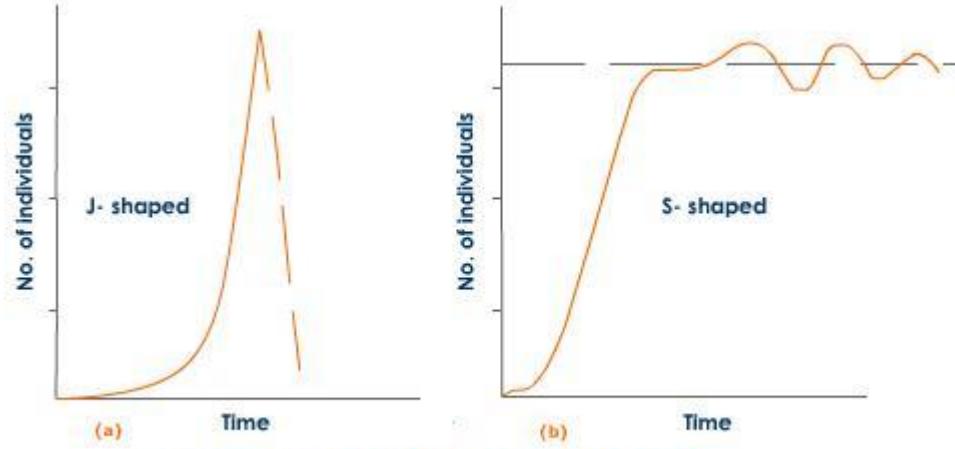
3 Death rate (Mortality) – leads to decrease in population, which can also occur through emigration

4 Sex ratio – proportion of females and males

5 Age structure – The age groups in a population: Pre-reproductive; Reproductive; Post reproductive.

Based on the proportion of the three age groups, a population can be described as

- i. Expanding – Reproduction > post-reproductive
- ii. Stable – Reproductive = post reproductive
- iii. Diminishing – Post and pre-reproductive > the reproductive


In the diagram above, the width of each bar is proportional to the percentage of individuals in the age class. In many populations, individuals younger than reproductive age (pre-reproduction), of reproductive age or past reproductive age (post-reproductive) can be distinguished. A stable population will show a gradual decline in percent of individuals in classes of increasing age. If most of its members in the post-reproductive age classes, the population is likely to decline. If unusually large percentages of individuals are in the pre-reproductive age classes, the population will grow fast as these members reach reproductive age.

6 Distribution – There are three types, namely Random, Uniform and Clumped.

Growth rate of population is best described in terms of doubling time i.e. time required for the population to double in size. The size of human population has increased exponentially. The density of the population with time represents growth pattern. There are two growth patterns in population:

a S shaped curve or sigma type characterized by low increase initially followed by a rapid increase, then decrease sets in due to environmental resistance

b J shaped growth curve – density increase rapidly in an exponential form and then stops abruptly due to changes in the environment.

Source: <https://www.tutorvista.com/content/biology/biology-iv/biotic-community/population-growth.php>

6.2 Impact of population growth on the biosphere

Population growth goes along with growth of towns and cities, which is referred to as urbanization. Urbanization is caused by the presence of social amenities like electricity, good roads, medical facilities, pipe-borne water, availability of industries and high quality goods and employment opportunities.

6.3 Consequences of population growth and urbanization

- 1 Accommodation problem
- 2 Lack of planned cities resulting in the development of slums
- 3 Reduction in the number of people farming in rural areas
- 4 More mouths to feed, therefore more emphasis on large-scale agriculture leading to deforestation, soil erosion, desertification, loss of wild and game animals
- 5 Epidemics like cholera, influenza
- 6 Antisocial behavior in human beings
- 7 High cost of living
- 8 Environmental pollution

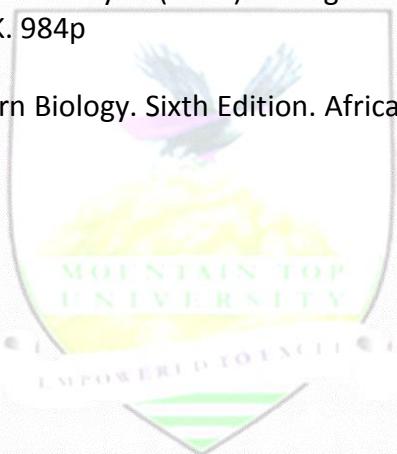
Post-Test

4. Which of the factors affecting population has the greater impact?
5. How do you think pollution can be controlled even with increase in population?

6. Has epidemics had a considerable impact on population in your country? Give reasons for your answer

Bibliography

<https://www.tutorvista.com/content/biology/biology-iv/biotic-community/population-growth.php>


https://en.wikipedia.org/wiki/Population_dynamics

Cadogan, Alan and Best, Gerry. Environment and Ecology. UK Nelson Blackie 1992

Miller, G. Tyler, Spoolman, E. Scott. Living in the Environment: Concepts, Connections and Solutions. Sixteenth Edition. Australia Brooks/cole 2007

N. P. O. Green, G. W. Stout and D. J. Taylor (2010). Biological Science 1 & 2. Third Edition. Cambridge University Press, UK. 984p

S.T. Ramalingam (2013). Modern Biology. Sixth Edition. Africana First Publishers Plc, Nigeria. 573p

