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2. Kinetic Theory of Matter 

In this case, we want to consider the motion of one molecule, out of millions of molecules, in a 
box of gas. Assuming the molecule is moving along the positive x-direction with a velocity ��, 
the momentum of the molecule would be ���. 

If the molecule moves across the length, �, of the box in time �, the velocity of the molecule 

would be �� � �
�. 

The rate of change of momentum of the molecule is given as:  
 � ��

� , from Newton’s 2nd law. 

But � �
�
 , therefore, the rate of change of momentum of the molecule  
 �  ��


�
�


� ��
�
�  

You will notice that this rate of change of momentum of the molecule is also the force with 
which the molecule hits the wall of the box. 

From Force,  �������� � �
����, and the area of the box = ��, the pressure of the molecule on the 

wall is: �������� � ���
�
� � � �

��� � ��
�
��  

Knowing that there could be N molecules in the box, we compute the total pressure on the wall 
of the box as follows: 

����� �������� �  �
� !��� " ��� " � � " ⋯ " �$� % 
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From experimental data, it has been found that, on average, only one-third of all the molecules in 
the box will travel along the positive x-axis. This now gives us the following: 

����� �������� �  �
3� !��� " ��� " � � " ⋯ " �$� % 

We can represent all the individual velocities of all the N molecules in the box with symbol '̅�  
which is the mean square velocity of all the molecules in the box.   

'̅� � ��� " ��� " � � " ⋯ " �$�
)  

Therefore, )'̅� � ��� " ��� " � � " ⋯ " �$�  

Hence, the ����� �������� �  �$*̅�
 ��  

You will notice that the � � +�����, - , therefore, ����� �������� �  �$*̅�
 .  

writing in compact form, we have /- �  �
 �)'̅�  ….this is the Kinetic Theory of Matter 

We can go further by saying that the total mass of all the particles in the box is 0 � �), then 

we have /- �  �
 0'̅�. Again, we can see that density, 1 � 2

. , therefore / � �
 1'̅�. This is 

another way of writing the Kinetic Theory of Matter. 

 

Instead of using the mean square velocity of molecules in a box of gas, we often use the root 
mean square velocity of all the molecules in a box of gas. 

The root mean square velocity = √'̅� � 4�
�5���5���5⋯5�6�
$  

 

3. Prove of Gas Laws using the Kinetic Theory of Matter 

We now use the just derived equation for the Kinetic Theory of Matter to prove the five gas 
laws: 

• Boyle’s Law (In a gas system, Pressure is inversely proportional to the Volume, / ∝ �
. , 

/ � 8
.) 
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From �  �
 �)'̅�,   / �  �


��$*̅��
.  , where our constant 9 � �

 �)'̅� 

For instance, in a mole of gas, ) ≡ ;, where  ; � Avogadro’s constant. In this case 
where ; � Avogadro’s constant, /- � <=� which gives 

/- �  1
3 �;'̅� � <=� 

�
 �'̅� � ?@A

B  , this is the equation of Kinetic Theory of Matter for one molecule and 

< � 1 

In this case, 
@
B � Boltzmann’s constant. 

Therefore, our constant 9 C< !�
 �)'̅�% is a function of the Boltzmann’s constant. 

 

• Charles’ Law (Volume is directly proportional to absolute temperature at constant 

pressure:  D.

D.� � A


A� ) 
From /- �  �

 0'̅�, we can write the same for two gas systems as follows: 

/-� �  �
 0'�̅�  and  /-� �  �

 0'�̅� 

Please note that the expressions for the mean square velocity for system 1, '�̅�, and mean 
square velocity for system 2, '�̅� can be written as: 

 '�̅� � �
.
� 5��,
� 5��,
� 5⋯5�6,
�
$   and   '�̅� � �
.�� 5��,�� 5��,�� 5⋯5�6,��

$  

 

According to Charles’ law, we have: 
D.
 !F


�2*
̅�%
D.� !F


�2*�̅�% �  A

A�   

If we are to write in terms of the molecules’ kinetic energies we have 

9� � �
� 0+�, therefore, /-� � �

 0'�̅� � �
 9��  

 Reason is because, 
�
 9�� � �

 ��
� 0+�� � �

 0'�̅�, where we have assumed that +� ≡ '�̅� 

 Therefore, 
D.
 !F


�2*
̅�%
D.� !F


�2*�̅�% �  A

A�

  becomes  
D.
 !F�

�8�
%
D.� !F�

�8��% �  A

A�

 

 

• Avogadro’s Law (Any 2 gas systems at same volume, temperature and pressure will 
contain the same number of molecules) 
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From /- �  �
 �)'̅�, we can write the same for two gas systems as follows: 

/�-� �  �
 �)�'�̅�  and  /�-� �  �

 �)�'�̅� 

If /�-� � /�-� , then )� � )� 
 

• Dalton’s La of Partial Pressure (In a mixture of gases, the sum of all their partial 
pressures is equal to the total pressure of the entire gas occupying a given volume) 

From /- �  �
 �)'̅�, we can write the separate partial pressure as: 

/-
- �  

13 ��)�'�̅�

-�
"

13 ��)�'�̅�

-�
" ⋯ "

13 �$)$'$̅�

-$
 

/-
- �  /�-�

-�
" /�-�

-�
" ⋯ " /$-$

-$
 

/ �  /� " /� " ⋯ " /$  
 

• Graham’s Law of Diffusion (The rate of diffusion of a gas is directly proportional to the 
mean velocity of the gas molecules OR the rate of diffusion of a gas is inversely 
proportional to the square root of the density of the gas) 

First, let’s derive a mathematical expression for the “rate of diffusion”. From the word 
rate, we know it has to do with time. Also from the word diffusion, we know it means 
mixing which involves the movement of gas molecules from point A to point B. 
Therefore, we can write 

 ���� �G HCGG��C�< �  IJK��?*� �LM�I NO �P� Q�K �L��*���K
�J�� ��8�? � +���'C�R 

Hence, by Graham’s La of Diffusion, ���� �G HCGG��C�< �  -S � T'S̅� �  �
TUV

 

In a mixture of gases, we have 
���� LW IJWW�KJL? LW Q�K S
���� LW IJWW�KJL? LW Q�K X �  .V

.Y � 4*V̅�

4*Y̅�
 �  TUY

TUV 

 

4. Mean Free Path of Molecules in a Gas 

From the word Free Path, it means path of a molecule during which it makes no collision. Then 
the statement Mean Free Path, is the mean of such paths. In other words, Mean Free Path of 
Molecules in a Gas is the total number of distance traveled by a molecule divided by the number 
of collisions during that distance. 
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0��< 
��� /��ℎ � H� " H� " ⋯ " H$
<��[�� �G '���C�C�<� 

In order to calculate the number of collisions, we’ll assume that the gas is in a pipe of cross-
sectional area \�� and that there are ) molecules in the gas and each moving throughout the 
length ; of the pipe. 

Another assumption is that the range of possible movements of one molecule (colliding) with 
others is from (a) colliding and never leave length ; � 1 and (b) colliding and reaching length 
; � ; 

 

The total number of collision is within this range and choosing ; � ;, we have  
����� <��[�� �G '���C�C�<� � !\��%!)%!;%  
It is interesting to note that choosing a case where the molecule collides with others and reach 
the other end of the pipe, the total number of distance in-between collision is approximately 
equal to the length of the pipe. Therefore, H� " H� " ⋯ " H$ ] ; 

Hence,  
0��< 
��� /��ℎ � ;

!\��%!)%!;% � 1
!\��%!)% 

 

5 Micro-canonical Ensemble 
The word canonical (from the word canon) means a general law, rule, principle, criterion or 
assumptions by which something is being judged or treated. The word ensemble means to view 
(or treat) a list of items as a group rather than as individuals. 

Let us consider an isolated system with fixed energy (i.e energy is neither leaving nor entering 
the system). If we assume that the system is an equilibrium system, then it means that 
temperature and pressure at any section of the system is exactly the same all through the system. 
Therefore, such isolated equilibrium system will be one whose accessible micro-states are 
statistically equally likely. 

We have introduced the word accessible because since the system is an isolated one, it is 
expected that any access (or attempt to access) any of its micro-states will result in raising its 
temperature of pressure. 

Let us define 

 Ω!_% � <��[�� �G ������ `C�ℎ �<��aR _ `C�ℎC< �< �b�C�C[�C�� �<���[�� 
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The probability of picking a given state in such an ensemble is  

p!n% � �
e!f%  

Since our system is an isolated equilibrium one, the probability of picking a state with energy 
_g h _ is zero. 

Now, a Micro-canonical Ensemble is an isolated equilibrium system which is treated using 

probability distribution p!n% � �
e!f%. 

Please note that Ω!_% could be ridiculously large, usually in the range of 10�  and for systems 

with 2 possibilities like quantum states spin-up and spin-down, the value could be about 2�k��
. 

Therefore, there is usually no physical meaning for these states since their number is too large to 
mathematically deal with. This therefore, brings up the need for statistical treatment. 

 

6 Entropy of an Equilibrium System  

The Entropy of an Equilibrium System is given as S!_% � 9XlogΩ!_% , where 9X � 1.38 q
10r� str� (i.e the Boltzmann’s constant). 

Note that the log is the natural log (i.e ln and not log to base 10). We’re taking natural log in 
order to reduce (compress, make less messy) the value of Ω!_%. In actual fact, the Ω~�$ while 
S~E. Hence, entropy is merely proportional to the number of molecules in the system which 
means that entropy is an additive quantity. 

To show that the entropy is an additive quantity, consider two non-interacting systems with 
energies _� and _�. The total number of states in them is Ω!_�, _�% � Ω�!_�%Ω�!_�%.  

If we bring these two non-interacting systems together with assumption that the can exchange 
energy, the entropy of the two systems will now become: 

S!_�, _�% � 9X�<wΩ�!_�%Ω�!_�%x 
S!_�, _�% � 9X�<wΩ�!_�%x " 9X�<wΩ�!_�%x 
S!_�, _�% � S�!_�% " S�!_�% ….this therefore shows that entropy is additive 

Furthermore, since the energy of the combined system is _�L��� � _� " _�, if we let the first 
system to take up energy _ y _�L���, then the second system can only take the remaining energy 
which is _�L��� z _. Hence, the number of available states in the combined system is   
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Ω!_�L���% � { Ω�!_J%Ω�!_�L��� z _J%
!f|%

 

Then, S!_�L���% � ∑ 9X�<~Ω�!_J%Ω�!_�L��� z _J%�!f|%  

S!_�L���% � { 9X�<~Ω�!_J%�
!f|%

" 9X�<~Ω�!_�L��� z _J%� 

Letting S�!_J% � 9X�<~Ω�!_J%� 

S�!_J%
9X

� �<~Ω�!_J%� 

Ω�!_J% � ���
!f|%
8Y �

 

Similarly, Letting S�!_�L��� z _J% � 9X�<~Ω�!_�L��� z _J%� 

S�!_�L��� z _J%
9X

� �<~Ω�!_�L��� z _J%� 

Ω�!_�L��� z _J% � ����!f�����rf|%
8Y �

 

Substituting into Ω�!_J% and Ω�!_�L��� z _J% into Ω!_�L���% � ∑ Ω�!_J%Ω�!_�L��� z _J%!f|%  

Ω!_�L���% � { ���
!f|%
8Y �����!f�����rf|%

8Y �
!f|%

 

Ω!_�L���% � { ����
!f|%
8Y �5���!f�����rf|%

8Y ��
!f|%

 

Ω!_�L���% � ∑ exp!f|% ���
!f|%
8Y � " ���!f�����rf|%

8Y ��  
 

Applying micro-canonical ensemble principle into this combined system, we assume that all 
states in the new combined system are all equally likely. The fact that all states are all equally 
likely means that for a combined state made up of smaller number of particles, the probability 
will be higher for such combined than for individual states with lower number of particles. 

Therefore, S!_�L���% ≡ 9X�<Ω!_�L���% � S�!_�% " S�!_�%  
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This simple expression is commonly seen around us everywhere in the world. In a nutshell, 
entropy increases when systems overlap or the restriction on system is removed. This is simply 
the second law of thermodynamics. 

 

7 Temperature 
 
 
 
 
 
 
8 Heat Capacity 
 

 

 

 

 

 




