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COURSE OBJECTIVES

GENERAL INTRODUCTION AND COURSE OBJECTIVES

The objective of this course is to introduce students to mathematical analysis of the field of real
numbers and their functions. The course will develop a deeper and more rigorous understanding
of calculus including defining terms and proving theorems about sequences and series of real
numbers, limits of functions, continuity as well as derivatives of real-valued functions. This
course also trains the students on how patterns and mathematical ideas can be translated into

formal and rigorous writing.
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1 Module One: SET THEORY

1.1 Introduction

The idea of a set is basic to all of mathematics. All mathematical objects and constructions
eventually go back to set theory. This shows that set theory is important for the understanding

of other concepts in mathematics.

Definition 1.1. By a set A, we mean a well-defined collection of objects such that it can be

determined whether or not any particular object is a member of A.

Generally, sets will be denoted by capital letters and small letters to denote the objects (ie
the elements) themselves. If a is in set A, we say that a is a member (or an element) of A and
write a € A.

Often a set A is denoted by specifying a property p that is uniquely satisfied by each of its

elements. In this case, we write
A = {a : a satisfies property p}

We shall use the following symbols

is an element of
is not an element of

for all

w <€t R M

there exists

iff | if and only if

Objectives
At the end of this module, students should be able to:

a. prove basic set theoretic statements and emphasize the proofs’ development;
b. identify various kinds of sets;

c. reproduce the formal definitions of operations on sets (set comprehension, subset, intersec-

tion, union, complement, set difference, empty set, power set, Cartesian product).
Pre-Test
a. What is a set?
b. List four sets operations

c. What is a countable set?
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1.2 Subset and Superset

If every element of a set A is also an element of a set B, then A is called a subset of B and
we write A C B. In this case we can also say that B is a superset of A and write B O A.
However, if there is an object b € B which is not in A, then A is a proper subset of B and we

write A C B or B D A.

Definition 1.2. A set without an element is called an empty set and is denoted by (.
An empty set is a subset of every set.

Definition 1.3. Assume A and B are sets.

(i) The union of A and B (denoted AU B) is the set of all objects that belong to A or B or
to both A and B.
AUB={a:a€ Aorac B}

(ii) The intersection of A and B (denoted A N B) is the set of all objects that belong to both
A and B.
AnNB={a:a€ Aandac B}

If AN B =1, then A and B are said to be disjoint.
(iii) A and B are equal if they have the same elements. A C B and B C Aiff A = B.

(iv) The difference between A and B (denoted by A\ B) is the set of all objects that belong
to A but not in B. If B is a subset of A, then A\ B is called the complement of B in A
and denoted by B’.

Theorem 1.4. Let A, B and C' be any sets, then
(i) ANA=A and AUA = A (idempotence)
(i) ANB=BNAand AUB = BUA (commutativity)
(iii)) (ANB)NC=AN(BNC) and (AUB)UC = AU (BUC) (associativity)
(iv) AN(BUC)=(ANB)U(ANC) and AU (BNC)=(AUB)N(AUCQC) (distributivity)
Proof. (i), (ii) and (iii) are evident. We prove the distributivity.

(a) AN(BUC)=(ANB)U(ANC). We need to show that AN(BUC) C (ANB)U(ANC)
and (ANB)U(ANC)CAN(BUCQ).
Let z € AN(BUC) then © € A and x € BUC. This means that z € A, and either
x € Boraz € C. Thus we have (i) z € A and = € B, or we have (ii) z € A and z € C.
Therefore t € ANBorz € ANCsox € (ANB)U(ANC). Since x was arbitrary, we
have AN(BUC)C (ANB)U(ANCQC).
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Conversely, let y € (ANB)U(ANC), theny € (AN B) ory € (ANC). It follows that
y € A and either y € B or y € C. Therefore, y € Aand y € BUC, so that y € AN(BUC).
Since y was arbitrary, we have (AN B)U(ANC) C An(BUCQC).

(b) Left for the students. O

Theorem 1.5. The sets AN B and A\ B are non-intersecting and A= (AN B)N(A\ B).

Proof. Suppose © € A\ B, then x € A and = ¢ B. Therefore x ¢ AN B. Conversely, suppose
r € AN B, then x € A and x € B. Therefore z € A\ B.

If 2 € A, then either x € B or x ¢ B. In the case x € B, € AN B. In the latter situation,
r € Aand x ¢ Bsothat z € A\ B. Thus z € (AN B)U (A \ B). Since = was arbitrary, we
conclude that A C (ANB)U(A\ B). Conversely, suppose y € (ANB)U(A\ B), theny € ANB
ory € A\ B. In either case y € A. Since y was arbitrary, (AN B)U (A \ B) C A. O

Theorem 1.6. (De Morgan Laws for Three Sets) If A, B,C' are any sets, then
(a) A\ (BUC)=(A\B)N(A\C)
(b) A\(BNC)=(A\B)U(A\C)

Proof. (a) We need to show that A\ (BUC) C (A\B)N(A\C) and (A\B)N(A\C) C A\ (BUC).
Suppose z € A\ (BUC), then € A but x ¢ (BUC). Hence x € A but z is neither in
B nor in C. Therefore v € Abut x ¢ Band x € Abut © ¢ C. Thatis z € A\ B and
x € A\ C. This shows that z € (A\ B)N (A \ C).

Conversely, if z € (A\B)N(A\C), thenx € A\ B and x € A\ C. It follows that x € A and
x is neither in B nor in C. That is x € A and = ¢ BUC'. It follows that z € A\ (BUC).

(b) Students should supply this. u

1.3 Cartesian Product

Definition 1.7. If A and B are two non-empty sets, then the cartesian product A x B of A
and B is the set of all ordered pairs (a,b) with @ € A and b € B. The order in which a and b

are written is considered essential to the identity of (a,b).
For example, if A = {a,b,c} and {1,2} then
Ax B ={(a,1),(a,2),(a,3),(b,1),(b,2),(b3)}.

A x B can be visualized as the set of six points in the plane where the coordinates are the

elements of the set A x B.

Example 1.8. fA={zrzeR: 1<z <2}andB={reR:1 <z <2}U{zr e R:3 <z <4},

A X B can be written as
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b (a,b)

Figure 1.1: Ordered pair (a,b)

Figure 1.2: The cartesian product A x B

If the cartesian product of R with itself is formed, the result is the cartesian plane. A
nice geometric representation of the cartesian plane can be constructed using two real lines
intersecting at a right angle at their origins.

In the sequel, we shall be discussing types of sets.

1.4 Finite and Infinite Sets
In this section, we shall assume familiarity with the set of natural numbers, N.
N=1{1,2,3,...}.

The set of natural numbers is a well-ordered set (ie giving any two different natural numbers

x,y, one can tell whether z < y or z > y).

Definition 1.9. A set X is finite if it is empty or if there is a one-to-one function with domain
X and range in initial segment of N. If there is no such function, the set is infinite. In other

words, a finite set is a set which one can count the elements and finish counting. For example,
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{2,3,4,7}.
The number of elements of a finite set X is a non-negative integer and is called the cardinality
of the set X. For example if

X ={a,b,i,j,1,m}

n(X) = 6.

1.5 Countable and Uncountable Sets

Definition 1.10. A set S is countable if there exists an injective function f from S to the set

of natural numbers.

The elements of a countable set can always be counted one at a time and, although the
counting may never finish, every element of the set is associated with a unique natural number.

For example, the set of all fractions between 0 and 1 is countable because the elements can be

1121312 3 4
2733 445 5 5 5

On the other hand, the set of real numbers is not countable. No matter how the elements

ordered

are arranged, one cannot provide a one-to-one relationship with the natural numbers such that

there is a definite first, second, third elements etc, and still cover every real number.

Remark 1.11. All finite sets are countable, but countable sets could be infinite. For example,
the sets of integers and rational numbers are countably infinite. Countably infinite sets are also

called denumerable sets.

We now state some results which are obvious.

Theorem 1.12. (i) Any subset of a finite set is finite.
(i) Any subset of a countable set is countable.
(i1i) The union of a finite collection of finite sets is a finite set.

(iv) The union of a countable collection of countable sets is countable set.

Post Test

1. If A, B,C are any sets, prove that

A\ (BNC) = (A\ B)U(A\C)

2. If A, B,C are any sets, prove that

AU(BNC)=(AuB)N(AUC)
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3. Prove that the subset of a finite set is finite.
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2 Module Two: THE REAL NUMBERS

Objectives
At the end of this module, students should be able to:

a. use field and order axioms of real numbers to establish basic results on real numbers;
b. establish triangle inequality;

c. give the definition of lower and upper bounds;

d. prove various theorems about supremum and infimum.

Pre-Test

a. Define ”set of natural numbers”;

b. Give two examples of denumerable sets

2.1 Introduction

We think of the real numbers as the points on a line stretching off to infinity in both directions.
The real numbers from an algebraic object known as a field, meaning that one can add, subtract

and multiply real numbers and divide by non-zero real numbers.
The Field Axioms For all z,y, 2z € R,

i) z+y=y+a

i) (z+y)+z=z+(y+2)

(iii) 30 e Rsuch that r+ 0 =2 VreR

(iv) For each x € R 3 — x € R such that x + (—x) =0

(v) zy =yx

(vi) (zy)z = z(y2)

(vii) 31 € Rsuchthat 1 #0andz-1 =2 V2 €R
(viii) if z # 0, 327! € R such that z(z71) =1

(ix) z(y +2) = 2y + yz

Real Analysis I by Adewole M.O. is licensed under a 7
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Order Axiom
(i) Tricotomy law: For all z,y € R, exactly one of the following three relations must hold:
@)r=y Mlz<y (Jz>y

The tricotomy axiom asserts that every real number other than zero is either positive or

negative but never both, and zero is neither positive nor negative.

(ii) For all z,y,z € R,
r<y ifonlyif xt+z2z<y+z2

(iii) For all z,y € R, if 2 > 0 and y > 0 then
x4y >0; xy >0

(iv) Transitivity order: For all x,y,z € R, if z < y and y < z then z < z.

Remark 2.1. If <y and y < z then x = y. This is because x < y and y < = are not possible

at the same time by law of tricotomy.

2.2 Absolute Value

If x € R, we define the absolute value of z, denoted by |z|, by

z if >0

lz|=<{ 0 if =0
—z if <0
For example, |2| = 2, | — 2| = —(—2) = 2. Intuitively, the absolute value of = represents the

distance of = from 0.
Theorem 2.2. (i) || >0,Vz eR; |z|=0 iff v =0;
(ii) |z| <aiff —a <z <a;
(iii) |vy| = lz|ly| V =,y € R;
(iv) Triangle inequality: |v + y| < |z|+ |y| ¥ x,y € R.

Proof. (i) If x > 0, then |z| = z > 0. On the other hand, if z < 0, then |z| = —z > 0. In
both cases,z > 0.

(ii) Suppose |z| < a, by the definition of |z|, z = |z| or x = —|z| which implies —|z| < z < |z|.
It follows that —a < —|z| < z < |z|] < a = —a < x < a. Conversely, suppose
—a<z<a Ifzx>0,then [z| =2 <a,if x <0, || = —2 < a. In both cases, |z| < a.
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(iii) The case is obvious for when z > 0 and y > 0. Suppose z # 0 and y # 0. If z < 0 and
y > 0, then xy < 0 = |zy| = —zy = |z||y|. The case x > 0 and y < 0 is similar. Now let
r <0 and y <0 then zy > 0 = |zy| = (—x)(—y) = |z||y|.

(iv) There are four possibilities

a. fx>0andy >0, thenz+y >0,s0 [z +y| =z+y=|z]+ |yl

b. If z <0andy >0, then x+y <0,s0 |z +y|l=—2+(—y) =|z|+ |y|

c. Ifx<0andy>0,thenx+y=—|z|+|y|,so|z+y|=]|—|z|+|y|| <|z|+ |yl
d. If 2 > 0and y <0, then x +y = |z| + (—|y|), so |z + y| = ||| — |y|]| < |z| + |y ]
Remark 2.3. If x and y are any two real numbers, then
e =yl =zl =yl and  |o+y[ = [[z] =yl
Proof. By triangle inequality,
lz] =]z —y+y| <|r—y|+|y| which implies |z —y|> |z| — |y| (2.1)
Similarly,
yl = ly — =+ 2| <z —y[+[z] which implies |z —y| > |y| — |z] (2.2)
It follows from (2.1) and (2.2) that |x — y| > ||z| — |y||-
The proof of |z + y| > ||| — |y|| is similar and left for the students. O

2.3 Upper and Lower Bound

Definition 2.4. A subset S of real numbers is said to be bounded from below (or simply

bounded below) if there exists « € R such that
a<uz Voes.

A subset S of real numbers is said to be bounded from above (or simply bounded above) if
there exists f € R such that
r<p Vzes.

S is said to be bounded if it is bounded both from above and from below. In this case, there
exists M > 0 such that
e <M Vzes.

Example 2.5. (i) Any finite subset of R is bounded. For example, S = {—3,—-2,0,1,4} is
bounded. Here, each element of S is greater than or equal to 3 and less than or equal to
4
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(ii) The set N=1,2,3, ... is bounded below, but not bounded above.

(iii) The set Z ={...,—2,—1,0,1,2,...} is neither bounded below nor above.

2
(iv) The set n
3n—1

2
,n=123,.. } is bounded below by 3 and bounded above by 2.

Note A set which is bounded (say above) by « may not contain «. For example, the set

p = (0,2) is bounded above by 2 whereas 2 ¢ .

Definition 2.6. Let S be a subset of R which is bounded above. An upper bound of S is said
to be a supremum (or a least upper bound) of S if it is less than any other upper bound of S.
Similarly, if S is bounded below, then a lower bound of S is said to be an infimum (greatest
lower bound) of S if it is greater than any other lower bound of S. In other words, if L is the

supremum of S then
s<L VseS

and whenever L’ is another upper bound for S, then L' > L. Similarly, if M is the infimum of
S, then
s> M Vsef

and whenever M’ is another lower bound for S, then M’ < M.

Remark 2.7. It is obvious that suprema and infima may not always exist. However, a finite set

will always have a supremum and an infimum.

Example 2.8. (i) If X = {8,6,—2,4, 1}, then inf X = —3 and sup X = 8. In this case, both

supremum and infimum belong to X.

(i) fY ={y: -3 <y <5}, then inf Y = —3 and supY = 5. Only the infimum belongs to
Y.

(ii) If Z={1,3,5,7,...}, then inf Z = 1 and sup Z does not exist.

—1)"
(iv) If {( +)1n 'n € N}, then inf A = —1 and sup A = 1. Neither 1 nor —1 belong to A.
n

Proposition 2.9. Let A C R be nonempty and bounded above. If o and (3 are least upper
bounds of A, then o = B, that s, the least upper bound of a nonempty subset of R which is

bounded above is unique.

Proof. Since « is a least upper bound of A and [ also an upper bound of A then a < £.
Similarly, since [ is a least upper bound of A and « also an upper bound of A then f < a. It
therefore follows that o = £. O

Lemma 2.10. Let S be a subset of real numbers which is bounded. Then the following equation
holds:

sup(—S) = —inf S and equivalently inf(—S) = —sup(9)
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Proof. Let M represent the set of all the lower bounds of S. Let a = inf Sthena < sVaz € S
and o/ < aVa € M. It follows that —a > —sV —se&€ —Sand —o' > —aV —ao € —M.
This implies —a = sup(—S) ie sup(—S) = —inf S. O

Lemma 2.11. Let A and B be bounded subsets of R such that A C B. Then

inf B<infA <supA <supB

“«--A--»

inf B infA supA supB
|

Figure 2.1: AC B

Proof. We need to prove that

(i) inf B <inf A (ii) inf A < sup A (iii) sup A < sup B (see Figure 2.1)

(i) Let « = inf B then a < bV b€ B. Since AC B, a <aVaéec A Hence a is a lower
bound for A so that a < inf A. But o« = inf B. Hence inf B < inf A.

(ii) It is clear from the definition of infimum and supremum that inf A <a < AVa € A.

(iii) Let B =sup B, then b < gV b € B. Since AC B,a < [V a¢€ A. Hence 3 is an upper
bound for A, therefore sup A < . It therefore follows that sup A < sup B. O

Example 2.12. Let A = (0,1). Prove that sup A = 1.

Solution Clearly, 1 is an upper bound for A. We claim that 30 < b < 1 which is also another

140
upper bound for A. Let x be the midpoint of 1 and b, ie x = % It is obvious that = € A,

1
but x — b = Tb > 0. Thus x > bV x € A. Hence b is not an upper bound of A.

Note The empty set is bounded above by any real number, hence it does not have a supremum.
We state (without proof) the fundamental property of the real number system that every

non-empty subset of R which is bounded above has:

Theorem 2.13. Fvery non-empty subset of real numbers which has an upper bound also has a
supremum.

Theorem 2.14. (Nested Interval Theorem) Let J, = [a,,b,] be intervals in R such that
Jus1 C Ty ¥V €N. Then () J, # 0.

n=1
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Figure 2.2: Cases where k£ < n and k > n respectively.

Proof. Let A be the set of left endpoints of J,. Thus, A := {a ¢ R : a = a, for some n}. It
is obvious that A is nonempty. We claim that b, is an upper bound for A for each k € N, ie
a, < by for all n and k. If k& < n, then [a,,b,] C [ag, br] and hence a, < b, < by. If k > n,
then a,, < ap < b,. Thus the claim is established. By the definition of least upper bound, there
exists ¢ € R such that ¢ = sup A. We claim that ¢ € J, Vn € N. Since ¢ is an upper bound for
A, we have a,, < ¢ Vn. Since each b,, is an upper bound for A and c is the least upper bound
for A, we have ¢ <b,,. Thus we conclude that a,, < c¢ <b, Vn € N. Hence c € J,. O

Post Test

1. Let a,b € R, prove that
[la| = [b]] < |a +b] < [a] +[b]

2. A BCR A#0, B#0,let A+ B={a+b:a€ Abec B}.
(a) Show that
sup(A+ B) =sup A+sup B
if A and B are bounded above.

(b) Show that
inf(A+ B) =inf A +inf B

if A and B are bounded below.

3. Show that v/2 is irrational. Hint: show that if v/2 = @, where m and n are integers,
n

then both m and n must be even. Obtain a contradiction from this.
4. Find the supremum and infimum of each S. State whether they are in S.

(a) S={reR:z* <4}

(b) S={zeR:z* <10}
2n
3n+1

5. Let X and Y be bounded subsets of R such that A € B. Then

(c) S={reR:z= =1,2,...}

inf B<infA <supA <supB

6. Let A= (0,1). Prove that
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(a) supA =1
(b) inf A =0

7. Let I, := [ay,, b,] be intervals in R such that I,,; C I,, V n € N. Prove that

(1. #0
n=1

8. Show that any nonempty subset of Z which is bounded above in R has a supremum.
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3 Module Three: SEQUENCES

Objectives
At the end of this module, students should be able to:

a. define and recognize the sequence of real numbers and convergence ;
b. establish the convergence or divergence of sequences of real numbers;

c. give the relationship between convergence and boundedness of real sequences;

Q.

. prove various theorems about convergence of real sequences;
e. establish basic results about monotone sequences.
Pre-Test

a. What is a sequence?

b. What type of set is a sequence?

3.1 Introduction

Definition 3.1. Let X be a nonempty set. A sequence in X is a function f on an infinite
subset of N the set of natural numbers whose range is contained in the set X. We let z,, := f(n)
and call z,, the n-th term of the sequence. One usually denotes f by {z,} or as an infinite

tuple (1,29, ..., Ty, ...).

In this course we denote a sequence by {x,}°°, (or simply {z,}) and n-th term of the

sequence by x,. We shall be concerned with sequences in R, also called real sequences.

1
Example 3.2. (i) Let x, = —, the sequence is
n

1
Another way of writing this sequence is {—}
n

I ) e N T B 1 1
(“){ S B N ML ARy e L A

(iii) Let z, = “_ VneN

n+1
1] 2 100 | ... | 1000 | ... | 100,000
1] 2 100 1000 100,000
213 101 | | 1001 | """ | 100,001
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It is clear from the above table that as n increases, the value of x,, approaches the value
1. ie

lim z, =1 or limz, =1 or T, — lasn — oo
n—oo

Definition 3.3. A sequence {xz,} of real numbers is said to converge to a real number x iff for

any given € > 0, there exists a natural number ny (which depends on ¢) such that
|z, —z| <e Vn>ng

The number z is called a limit of the sequence {x,}. We then write lim x, = z. A real
n—o0

sequence which does not converge to a real number is said to diverge.

Remark 3.4. If f : N — R is a sequence, denoted by {z,}52,, its restriction to the subset
{k € N: &k >mng} is denoted by {z,}72,,. {Tn}ney, is called the tail of the sequence {z,};2,;.
Thus if {z,,} converges to x, then we want the entire tail starting from ng to lie in the interval

(x —e,x+e).

1
Example 3.5. (i) Show that {—} —0asn— o0
n

1
i1) Show that < — p — 0 as n — oo
2n

1
(ii}) Show that lim (?Z i 4) _ %

Lemma 3.6. (Uniqueness of limit) If x,, — x and z,, — vy, then z = y.

Proof. Let € > 0 be given. Since x,, — x and x,, — y, there exist integers ny; and ny such that

oy — x| < % for k>ny
|l —y| < % for k> ns
Let ng = max{ny,na}. Then V k > ng, we have
v —yl=lr -z + a2 —y| <|op — 2|+ |z —y| <e L

The following lemma gives the behaviour of the absolute values of the terms of a converging

sequence
Lemma 3.7. Let {x,} be a sequence of real numbers.
(i) If x, — x, then |x,| — |z|. However the converse is not true
(i) The sequence x,, — 0 iff |z,| — 0
(i1i) The sequence x, — z iff (x, —x) — 0 iff |z, — x| — 0

We are now ready to prove the basic property of convergent sequences
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Theorem 3.8. Fvery convergent real sequence is bounded.

Proof. Let x,, — x and, for simplicity, let £ = 1. There exists ng € N such that
|z, — 2] <1 for n > ny.

Then
20l < v — 2l +[o| <1+ la]  for n>no.

This implies {z,} is bounded for n > ng. To obtain an estimate for all {x,}, set
C = max {|z1],|zal, ..., |Tng-1], 1 + ||} .

Then we have
|z, < C for n=1,2,3,... ]

Remark 3.9. The converse of Theorem 3.8 is not true in general. For example, the sequence

{(=1)"} is bounded but not convergent.

Given any two convergent sequences {z,} and {y,}. New sequences can be obtained from
these by adding or subtracting the terms, by multiplying by scalars or by multiplying term-

wisely. The following result address what happens to the newly formed sequence.
Theorem 3.10. (Algebra of convergent sequences) Let x, — x, x, — y and o € R. Then
(i) Tp+yn = T +y;
(1) ax, — ax;
(i) TpYn — TY;
o1 1 .
(iv) — — — provided that x # 0.
T, T
Proof. (i) Given ¢ > 0. Since x,, — x 3 n; € N such that
£
|xn—x|<§ for n>mny
Since v, — y 3 ny € N such that
€
|yn—y|<§ for n > ns.
Now, let ng = max{ny,no}. For n > ny

(@0 +yn) — (@ +y)| < |z — 2|+ [y —y| <e.

(ii) Let € > 0 be given. Since z,, — « 3 ny € N such that

g
|z, — x| < — for n>n,.
|l
Now,
lax, —az| = |af|z, — x| <e.
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(iii) Every convergent sequence is bounded. Therefore 3 C' > 0 such that
lz,| <C  VneN

Let € > 0 be given. Since x,, — x and ¥, — y, 3 n; € N and ny € N such that

€ 5
T, — x| < —"—— Vn>n and n— Ul <—= Vn>n,.
Choose ng = max{n;,ny}. Then V n > ng, we have
[Zayn — 2y = [Taln — Tay + Ty — Y|
= |20y —y) + y(zn — T)|
< Jzallyn —yl + yllen — 2
< C=+(yl+ 1) =
2 W T v T
(iv) Let € > 0 be given. Since x,, — x and z # 0, 3 n; € N such that
|z, | > |a:7| for n>n;. (3.1)
To see this, observe that
|z| < |xn — x| + |2n] < €4 |24 = |zn| > |z —e.
There is an ny; € N such that ¢ = % And so (3.1) follows.
Now, there exists ny € N such that
2
]xn—x\<% V' n > ns.

Choose ng = max{ny,ns}. Then for every n > ny,

1 1 T — Xy, 1 1
——— = = —|x -z,
2 1  elzf
- X —

| =] 2|

The result below shows that the order ”<” is preserved when taking limits.

Theorem 3.11. Suppose {z,} and {y,} are convergent sequences and that x, — =, y, — y.
Ifx, <y, VneN, thenx <y.

x J—
Proof. We prove this by contradiction. Suppose z > y. Take ¢ = Ty > 0. Since z,, — z,

there exists ny € N such that x — e <z, < x + ¢ V n > ny. Similarly there exists ny € N such

that y —e <y, <y +¢e Vn >mny. Let ng = max{ny,ny}, then for all n > ny,

r—y
yn<y+€:y+T:x—€<xn.

This contradicts the assumption that z, <y, Vn € N. Hence x < y. O
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3.2 Monotone Sequences

Definition 3.12. A sequence {x,} of real numbers is called
(i) monotone non-decreasing if x,.1 >z, Vn €N;
(i) strictly increasing if z,41 >z, Vn €eN;

(iii) monotone non-increasing if x,,; <z, Vn éeN;

(iv) strictly decreasing if z,,1 <z, Vmn € N.

Remark 3.13. Any non-decreasing sequence is bounded below by x;. Hence such a sequence is
bounded iff it is bounded above. Similarly any non-increasing sequence is bounded above by

x1. Hence such a sequence is bounded iff it is bounded below.

There are four ways to verify that a given sequence {z,} is monotone.

a. Examine the difference x,,1 — x,. If x,.1 — x, > 0 for all n € N, then the sequence is

monotone non-decreasing. If z,.1 — z, < 0, the sequence is monotone non-increasing.

xn—i—l

b. Examine the quotient "1 (provided z,, > 0V n € N). If

n :'UTZ

> 1 for all n € N, then the

Tnt1

sequence is monotone non-decreasing. If < 1, the sequence is monotone non-increasing.

Ty,
¢. The use of calculus. In this case, the sequence is written as a function f of x such that
x > 1. Obtain f’(z) the derivative of f with respect to x, where x > 1. If f’(x) > 0 then the

sequence is monotone non-decreasing. If f’(z) < 0, the sequence is monotone non-increasing,.
d. Mathematical induction.

Example 3.14. Verify if the sequences defined by

R
2 {1

are monotone non-decreasing, monotone non-decreasing or not.

A real sequence {z,} that is bounded above has a supremum (say (). If the sequence is
non-decreasing, then all its elements will come closer to 8 but will never exceed [ as n — oo
This suggests that the sequence converges to 5. Similarly, a monotone non-increasing sequence
of real numbers which is bounded below converges to its infimum. We put these together in

the theorem below.

Theorem 3.15.
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Figure 3.1: Non-decreasing sequence that is bounded above.

(i) A monotone non-decreasing sequence of real numbers which is bounded above converges.
(i) A monotone non-increasing sequence of real numbers which is bounded below converges.
Proof. We O]
Theorem 3.15 can be used to establish the existence of the Euler number e.

1 n 1 n+1
lim <1+—) = lim (1+—) =e
n—00 n n—00 n

Lemma 3.16. Let

3.3 Completeness of Real Numbers

Definition 3.17. A sequence {z,} in R is called a Cauchy sequence (or a fundamental se-

quence) if for each € > 0 there exists ny € N such that
T, — x| <e YV m,n > ng

Definition 3.18. A set S is called complete if every Cauchy sequence in S converges to an

element of S.

Theorem 3.19. (Completeness of R) A real sequence {x,} is Cauchy if and only if it is

convergent.
Proof. We need to show that
1. every convergent real sequence is Cauchy

2. every Cauchy sequence is convergent
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Remark 3.20. The set Q of rational numbers is not complete.

Proof. To justify this, it is enough to produce a Cauchy sequence in QQ which converges to an
1 n
element not in Q. For this, we consider the sequence {x,} defined by z, = (1 + —) , n=
n
1,2,3,.... This sequence is Cauchy. To see this,

(i) -(+5)
Tp—Tym=\(1+—| — |1+ —
n m

Suppose n = m + k for some k € N, then

1 m—+k 1 m
fo— Oy = (1+—) _<1+_)
m+k m

(VAN
W

Set 4

k
1 1
14— -1l <e = m>——-.
( m> ] Yi+1-1
1
Take ng = 1 + —————, then

Y5+1-1

|z — zm < |€ for n,m > ny

This shows that [l

Post Test

2n 2
— —asn— 0.
3n+1 3

2. Let z, —» z, y, — y and 5 € R\ {0}. Prove that

1. Show that

(a) Tp —Yp —7 T —Y

1 1
(b) =z, — =x

B B

3. True or false. If {z,,} and {y,} are sequences such that z,y, — 0, then either x, — 0 or
Yn — 0.

4. Let b, > 0 and b, — 0. Assume that there exists an integer N such that |a, — a| < b,
for all n > N. Prove that a,, — a.

5. Give a counterexample to show that the set QQ of rational number is not complete.

6. Suppose that {a,} is a convergent sequence with a < a,, < b for all n € N. Prove that

a < lim q, <b.

n—oo
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7. Let {z,} be a sequence such that
’xn—‘rl - -rn| S T|$n - mn—1|>
for some constant 7 € (0,1). Show that {z,} is convergent.

8. Let {z,} be an increasing sequence. Prove that {z,} is convergent if and only if it is

bounded above.
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4 Module Four: INFINITE SERIES

Objectives
At the end of this module, students should be able to:

a. define and recognize the series of real numbers as sequences of partial sums;
b. establish the convergence or divergence of infinite series;

c. prove various theorems about convergence of series;

d. test for the convergence of infinite series.

Pre-Test

a. What is geometric series?

b. What is sum to infinity?

4.1 Introduction

Definition 4.1. A series Z ay, of real numbers is defined as a double sequence {a,, S,,} which

k=1
satisfies the following condition
n

Sn:Zak

k=1
where a,, — S,, — S,_1.

The number a,, is called the general term of the series and 5, is called the nth partial sum

of the series.

o0

Definition 4.2. We say that the infinite series Zaj is convergent if the sequence {S,} of
j=1

partial sums is convergent. In such a case, the limit s := lim S, is called the sum of the series

o0 o

and we denote this fact by the symbol Z a; = s. We say that the series Z a; is divergent if
j=1 j=1

the sequence of its partial sums is divergent.

Definition 4.3. If s = Zaj, and Zaj = S, the number s — S, = Z a; is called the
j=1 j=1 j=n+1
remainder of the series or the tail end or simply the tail of the series.

o] 9 i
Example 4.4. (i) The geometric series Z (5) = s is convergent to the number 2. To see

Jj=1
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this, observe that

(ii) Determine whether or not the series 1 +3 + 5+ ... converges.

Solution

(iii) Determine whether or not the series

1 1 1

2-5+5~8+8-11+“'

converges.

Solution
1

The nth term of the given series is a, = :
(3n —1)(3n +2)

n

1
O = Z(3r—1)(i>>r+2)

r=1

1 « 1 1
= ; (37’ T 3 2) By partial fractions

Now, take

Remark 4.5. The method of summation used in the previous example is called telescoping
method. The method is particularly suitable in some cases when the general term of a series

can be resolved into partial fractions.

Proposition 4.6. If Z a, converges, then a, — 0.

r=1
Proof. Let Z a, be convergent. It follows that {S,} is convergent. So let
r=1

lim S,, = s.
n—oo

This also implies that lim S,,; = s. By definition,
n—oo

ap = Sn - Snflv
lima,=1lim S, — lim S,_1=s—s5s=0
n—00 n—00 n—00 ]
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Note The converse of this proposition is not true.

oo
Theorem 4.7. (Cauchy criterion) The series Z a, converges iff for each € > 0, there exists
n=1
nog € N such that
m,n > ng = |Sy — S| < e.
oo
In other words, the series Z a, converges iff for each ¢ > 0, 4 ny € N such that
n=1
n>m > ng = |@mi1 + mao + ... Fay| <e.
o
Proof. Let Z a, be convergent. Then the O]

n=1
Note: The Cauchy criterion is quite useful when we want to show that a series is convergent

without bothering to know its sum.

e} [e.e]
Given any two series Z a, and Z b, and a scalar A € R,

n=1 n=1
Zan+an = Z(an—i—bn)
n=1 n=1 n=1

)\ian = i()\an)
n=1 n=1

Theorem 4.8. (Algebra of convergent series) Let Zan and an be two convergent series

n=1 n=1

with their respective sums A and B, and let \ € R.

(i) Their sum Z(an + by,) is convergent and we have Z(an +0b,) =A+B.

(ii) The series /\Z a, s convergent and we have \ Z an, = AA.

n=1 n=1

Proof. (i) Let

(i)
O

[e.e]
Definition 4.9. The series Zak is said to be absolutely convergent if the infinite series

k=1
oo

Z |ax| is convergent. If a series is convergent but not absolutely convergent, then it is said to

k=1
be conditionally convergent.

Proposition 4.10. ]fZak s absolutely convergent then Zak 15 convergent.
k=1 k=1
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Proof. Let S,, and o, denote the partial sums of Z ay, and Z |ax| respectively. Tt is enough
k=1 k=1
to show that {S,} is Cauchy. We have, for n > m,

n n
|Sn_Sm| - E 3 S § |ak| =0p —Om,
k=m+1 k=m+1
which converges to zero because {0, } is convergent. Hence {5, } is a Cauchy sequence. O

Note: The converse of Proposition 4.10 is not true.

4.2 Test of Convergence of Series

How can one know whether or not a series is convergent?
(a) Comparison test

(b) Integral test

(c) d’Alembert’s ratio test

(d) Cauchy’s root test

(e) The limit comparison test

4.2.1 Comparison Test

Theorem 4.11. Let Zan and an be series of mon-negative real numbers. Assume that
n=1

n=1
an < b, for alln € N, then

(i) if Z b, is convergent, then so is Z an

o oo
(11) ifZan is divergent, so is Z by,
n=1 n=1

Proof. Let

n n

Sn:Zaj and Tn:Zb]

j=1 j=1
Since a; < by for all k£ € N, we see that S,, < T,,.

(i) If Z b, is convergent, let T,, — t. We know that ¢ = lub{7}, : n € N}. Hence S,, <T,, <t
n=1
so that t is an upper bound of the set {S, : n € N}. {S,} is an increasing sequence and

bounded above, therefore converges (by Theorem 3.15).
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o0

(ii) If Z a, is divergent, note that its partial sums form an increasing unbounded sequence.

n=1
Given M € R, d ny € N such that for & > ng, we have S, > M. Hence T}, > S, > M for

such k. We therefore conclude that Z b, is divergent. ]

n=1

2n — 1
Example 4.12. Show that comparison that the series Z ( n

n

) is divergent.
solution
It is

4.2.2 Integral Test

o

Definition 4.13. An infinite integral / f(t) dt is said to converge if / f(t) dt tends to a

finite number as N — oo. Otherwise the integral is said to diverge.

If f:]a,b] = R is continuous with a < f(x) < 8 for = € [a, ], then

b
alb—a) < / flz)dz < B(b—a). (4.1)

This inequality can be seen geometrically by considering a non-negative function f and using

the geometric interpretation of the definite integral.

Theorem 4.14. (Integral test) Assume that f : [1,00] — [0,00) is continuous and decreasing.

Let a,, := f(n) and b, ::/ f(t) dt. Then

1

(i) Zan converges if {b,} converges,

n=1

(i1) Zan diverges if {b,} diverges.

n=1

Proof. Since f is decreasing, we have
f(n)<t<f(n—-1) for ten—1,n], n=2,34,...

It follows from (4.1), that

n—1
so that
n n n—1
Zakg/ f(t) dtS Qg
k=2 1 k=1
This implies
n n—1
Z ar < b, < a
k=2 k=1
(i) and (ii) follow by comparison (Theorem 4.11) O
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=1
Example 4.15. Show that the series g — converges if p > 1 and diverges if p < 1.
n
n=1

1
Solution Let f(t) = 7’ t > 1. Obviously, f is non-negative, monotone decreasing and
integrable.
Ifp=1

4.2.3 d’Alembert’s Ratio Test

Theorem 4.16. Let Zar be a series of positive reals. Assume that

r=1
n—oo CLT
Then the series Zar 18
r=1

1. convergent if 0 < vy < 1

2. digergent if v > 1.
The test is inconclusive if v = 1.
Proof. If O

Example 4.17. Test the convergence of otherwise of each of the following series

[e.e]

10n
1. 27

n=1
© n
a
2. Z ﬁ’ a>0
n=1

4.3 Rearrangements

Given a series Z a,, we can obtain another series by rearranging the terms in the series. The
n=1
following information explains what happens to the new series.

Theorem 4.18. Ifz a, converges absolutely, and by, by, ... by, ... is any arrangement of the

n=1
sequence {ay,}, then an also converges absolutely. Furthermore
n=1
D be=2 an
n=1 n=1

Remark 4.19. If we rearrange infinitely many terms of a series that converges conditionally, we

can get results that are far different from the sum of the original series.
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Post Test
1. Let Z a, and Z b, be two convergent series with their respective sums A and B, and

n=1 n=1
let A € R\ {0}. Prove that

a. i(an—bn) =A-B.

n=1

1 & 1
b. X;an:XA.

o
2. Prove that a necessary condition for a series Z a, to be convergent is that lim a, = 0.
n—oo
n=1

2

oo n
3. Show that the geometric series Z <§> is convergent to the number 2.
n=1

4. Use telescoping method to determine whether or not the series

! + : + ; +
2-5 5.8 8-11
converges.
5. (a) When do we say a series Z a, is absolutely convergent?
r=1

(b) Show that if Z a, is absolutely convergent, then Z a, is convergent.

r=1 =1

=1
6. Use integral test to show that the series Z — converges if p > 1 and diverges if p < 1.
r
r=1

oo
2r —1
7. Use comparison test to show that the series Z ( ) diverges.

r
r=1

=1
8. Use integral test to show that the harmonic series E — is divergent.
r

r=1

9. Using d’Alembert ratio test, test the convergence or otherwise of the following series
X Er
(a) > —
r=1

(b) Z%, a>0

r=1
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5 Module Five: FUNCTIONS

5.1 Introduction

In this topic, we shall discuss continuity of functions and their properties. We shall also discuss

differentiability of functions as well as Taylor’s theorem.

Objectives
At the end of this module, students should be able to:

a. define and recognize the real functions and their limits;

b. prove various theorems about limits of functions and emphasize the proofs’ development;
c. define continuity of a function;

d. prove various theorems about continuous functions;

e. define the derivative of a function;

f. prove various theorems about the derivatives of functions.
Pre-Test

a. Evaluate

|
) 3161_% x—1
(i) lim LY

z—0 g

b. What is a continuous function?
c. Differentiate each of the following functions with respect to x
r+1

® ——

(i) e*sinz

5.2 Limits of Functions

From the definition of limit of a sequence, lim z,, = xo means that z,, is arbitrarily close to xg
if n is sufficiently large. The definition of gﬁf(ﬁnction limit is intended in much the same way.
That is

lim f(x) =L

r—ra

means that f(z) is arbitrarily close to L if = is sufficiently close to a.
It is important to note from the above statement that f(a) is not part of the consideration. It
is possible that f(a) = L, but whether this is true or false should not be any influence on the

existence of the limit.
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Definition 5.1. For a real-valued function f, we say that

lim f(z) =L

r—a
if and only if the following conditions are satisfied

(a) f is defined on some interval, I',, around a, where I, is defined by

Io={2:0<|z—a| <0}

(b) for every sequence {z,} in I', such that z,, — a, we have

lim f(z,) = L.

n—oo

5.2.1 One-Sided Limit

It is possible for a function to fail to have a limit at a point and yet appear to have limits on

one side. So we introduce the following definition
Definition 5.2. (a) (Limit from the right) xligi f(z) = c if the following two conditions are
satisfied
(i) f is defined on some interval (a,a + §), 6 > 0;
(ii) if {x,} is an arbitrary sequence in (a,a + J) such that z,, — a, then f(z,) — c as

n — oQ.

(b) lim f(x) = c is defined similarly.

r—a~

Proposition 5.3. Let f : D(f) C R — R be any map. Then

lim f(z) =L iff lim f(z)= lim f(z)=1L
T—a r—at r—a—
Proof. Suppose lim f(x) = L. Therefore f is defined on O]
r—a
Theorem 5.4. Suppose f(z) — Ly as x — a and g(x) — Lo as x — a, then
(i) f(x)+g(x) = L1+ Ly as x — a;
(i) f(x)—g(x) = L1 — Ly as x — a;
(i1i) f(x)g(x) — LiLy as x — a;
w) —= — — provided g(x) #0V x, asx — a
(i) L 22 provided g(o)

Can a function have two different limits?

Theorem 5.5. (Uniqueness of Limits) Suppose that

lim f(x) =1L,
Tr—xTQ
then the number L is unique.
Proof. 1t follows from the uniqueness of limit of a sequence O
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5.3 Continuity of Functions

Definition 5.6. Let f: D(f) C R — R be a map with domain D(f) C R. Then f is said to
be continuous at xzy € D(f) if given any € > 0, there exists 6 > 0 such that

|f(z) — f(xo)] <e  whenever |z — 20| <9

fxo) +¢

f(xo)
fxo) —¢

Xo— 0 %o+ 68

Figure 5.1: Continuity at x

Example 5.7. Prove that f: R — R defined by f(z) = 22* — 1 is continuous at = = 2.

Solution
Let

We now give another definition of continuity which is very convenient in applications

Definition 5.8. A function f: D(f) C R — R is continuous at z¢ € D(f) if for any sequence
{z,} in D(f) such that x,, — ¢, then f(z,) — f(zo).

Theorem 5.9. Definitions 5.6 and 5.8 are equivalent

In the sequel, we shall be using Definition 5.8 to establish important results on continuity

of functions.

Theorem 5.10. Let f,g:J — R be continuous at a € J and let « € R, then
(i) f+ g is continuous at a;

(ii) f— g is continuous at a;

(i1i) af is continuous at a;

(iv) fg is continuous at a;
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Proof. (i) Let {x,} be a sequence in J such that x,, — a. We need to prove that (f+g)(z,) —
(f + g)(a). By definition, (f + g)(z,) = f(z,) + g(x,). Since f and g are continuous at
a, we have f(x,) — f(a) and g(z,) — g(a). By the algebra of convergent sequences, we
have f(zn) + g(xn) = f(a) + g(a). This means (f + g)(zn) = (f +g)(a).

(ii) Similar to the prove of (i) and left as an exercise for the student
(iii) Similar to the prove of (i) and left as an exercise for the student

(iv) Let {z,} be a sequence in J such that z,, — a. We need to prove that (fg)(x,) — (fg)(a).
Now, (fg)(xn) = f(xn)g(x,). Since f and g are continuous at a, we have f(z,) — f(a)
and g(x,) — g¢g(a). By the algebra of convergent sequences, we have f(x,)g(z,) —

f(a)g(a). This means (fg)(x,) — (fg)(a). C

We then state the most important global results on continuity.

Theorem 5.11. (Intermediate Value Theorem) Let fla,b] — R be a continuous function. Let
A be a real number between f(a) and f(b). Then there exists ¢ € (a,b) such that f(c) = \.

Remark 5.12. We assume in Theorem 5.11 that the domain is an interval. If the domain is not

an interval, the conclusion does not remain valid.

Theorem 5.13. (Weierstrass Theorem) Let f : [a,b] — R be a continuous function. Then f

s bounded.
This theorem explains that every continuous function on [a, ] is bounded on [a,b]. However,
the converse is not true in general.

Remark 5.14. If the domain is not bounded or if the domain is not closed, then Weierstrass
1

theorem is not true. For example, f(x) = — is not bounded on (0,1) and g(z) = z is not
x

bounded on (0, c0).

5.4 Differentiability

Definition 5.15. Let J be an interval and ¢ € J. Let f : J — R. Then f is said to be

differentiable at c¢ if there exists a real number « such that

Lo @) = (o)

= 5.1
If we take h = x — ¢, (5.1) can be written as
B) —
i LCEM =S (5.2)
h—0 h
(5.1) can also be defined in € — ¢ form.
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Definition 5.16. We say that the derivative of f at ¢ is a € R if for any given € > 0, there
exists a 0 > 0 such that

reJ and 0<|zr—c|<d = |f(z)— flc)—alx—c)| <elz—¢| (5.3)
We say that f is differentiable on J if it is differentiable at each ¢ € J.
Example 5.17. Let f : J — R be given by f(z) = ax + b. Show that f'(x) = a.

Solution

Let € > 0 be given, then
|f(x) = flc) —alz —c)|=|ax +b— (ac+b) —a(x — )| =0

This suggests that we can choose any ¢ > 0 for the given € > 0. Since ¢ was arbitrary, f is
differentiable on R and f'(z) = a.

Example 5.18. If f : J — R is given by f(x) = 422, show that f is differentiable on R and
f'(x) = 8.
Solution
[f(z) = fle) —alz — )| = [4a® —dc” —8c(z — o)
= |4(x —¢)(x + ¢) — 8c(z — ¢)|
= 4|z — c|jlz — ¢
Now, given £ > 0, choose § = min {1, Z} For z such that 0 < |z — ¢| < J, we have
|f(z) — f(c) —a(x —¢)| < 46|z —c| < e|lz —¢|.

Since ¢ € R was arbitrary, f is differentiable on R and f'(z) = 4x.

We now prove an important result
Theorem 5.19. If f is differentiable at a, then f is continuous at a.

Proof. We use a less rigorous approach. Let a € D(f) be arbitrary. We need to show that f is

continuous at a. Now, for any = € D(f), = # a, we have

—a) R R f(a) (5.4)

Since f is differentiable at © = a, f'(a) exists ie

lim f(x) _ f(a) _ f/(a)
T—a Tr—a
Now from (5.4),
lim f(z) = lim(z —a)lim @) = Jla) + lim f(a)
T—a Tr—a Tr—a Tr—a Tr—a
= 0 f(a) + f(a)
= f(a). O
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Theorem 5.20. Let f and g be both differentiable at a. Then
(1) if h(z) = f(z) + g(x), then W (a) = f'(a) + ¢'(a)
(i) if h(x) = f(x)g(x), then h'(a) = f(a)g'(a) + g(a)f'(a)
fiii) if hiz) = L% and g(a) 0, then (a) = L@ ~ J@)g(a)

g(x) l9(a)]
Proof. (i) If h(z) = f(x) + g(z), then

Vo) = 01O
o f@) 4 9@ — f(@) — g(@)
ORI ORY0)
= fla)+g

Similarly, if h(z) = f(z) — g(x), then W' (x) = f'(z) — ¢'(z).
(i) If h(z) = f(z)g(z), then

W) — tm L0)9) = F@)oo)

_ g J®)9(@) - f(a)g(x) + f(a)g(z) — fla)g(a))
=t T o)+ iy 8
= f'(a)g(a) + g'(a) f(a)
= /(@) an a en
(iii) If A( >_g(x) d g(a) # 0, th
fl@)  fla)
h'(a) — lim g(z) — g(a)
o F@gla) ~ fla)g(a)
ava (x—a)g(z)g(a)
o f@)a(e) — fla)g(@) — f(2)(@) + F)gla)
r—a (J] — CL) (x)g(a)
= lim f(@) = fla) — lim 9(z) — 9(a) - lim /()
w=a (z —a)g(a)  @—a (z—a)gla) »—ag(z)
o) @@
g9la)  [g(a))?
_ Jaygla - fla)g/(a)
g(a))? -

We now give the chain rule

Theorem 5.21. (Chain rule) Let f : J — R be differentiable and f(J) C Jy, an interval and if
g : J1 — Ris differentiable at f(c), then gof is differentiable at c with (gof) (c) = ¢'(f(c))-f'(c).
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Definition 5.22. Let J C R be an interval and f : J — R be a function. We say that a point
¢ € J is a local maximum point if there exists 6 > 0 such that (c—d,¢+6) C J and f(x) < f(c)
for all z € (¢ —d,¢+ ). A local minimum point is defined similarly. A point ¢ is said to be a

local extremum point if it is either a local maximum point or a local minimum point.

Local minimum
point

T

Local maximum
point

Figure 5.2: Local maximum and minimum points

Following are the main theorems of differentiability of function.

Theorem 5.23. (Rolle’s theorem) Suppose

(i) f is continuous on [«, 5];

(ii) f(a) = f(B);

(i1i) f" exists on («, ),
then f has a local maximum or minimum at some ¢ € (a, 8) and that f'(c) = 0.
Theorem 5.24. (Mean Value Theorem) Let f : [a,b] — R be such that

(i) f is continuous on [a,b];

(i1) f is differentiable on (a,b).

Then there ezists ¢ € (a,b) such that

Proof. Consider

g(x) = f(z) — f(a) — W

Clearly g(a) = g(b) = 0. Therefore g satisfies the conditions of Rolle’s theorem (Theorem 5.23).

(x — a).

Hence there exists ¢ € (a,b) such that ¢’(c) = 0. This implies

: f(b) — f(a)
—_———— T O'
flo) = 25— .
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Note that the Mean Value Theorem (MVT) does not tell us what ¢ is. It only tells us that
there is at least one number ¢ that will satisfy the conclusion of the theorem.

The MVT has applications in the theory of differential equations and numerical analysis.

Post Test
1. Give a counter example to show that the converse of Theorem 5.19 is not true.
2. If f:J— Ris given by f(z) = 23, show that f is differentiable on R and f'(x) = 322

3. If f:J— Ris given by f(x) =
2x
(22 4+ 1)*

4. Let f,g:J — R be continuous at a € J and let o, 5 € R, then

o show that f is differentiable on R and f'(x) =
T

(i) f — g is continuous at a;
(ii) «f is continuous at a;

(iii) af + Bg is continuous at a;

5. If lim f(x) = L, lim g(x) = M and o, € R, prove that lim (af(z) — Bg(z)) =
T—T0

T—T0 T—T0

al.— M.

6. Prove that f: R — R defined by f(z) =

3 i1s continuous at z = 1.
x?+1
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